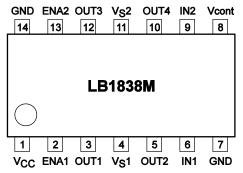


SANYO SANYO Semiconductors

Monolithic Digital IC Low-Voltage, Low-Saturation **Bidirectional Motor Driver**

Overview

The LB1838M is a low-saturation two-channel bidirectional motor driver IC for use in low-voltage applications. The LB1838M is a bipolar stepper-motor driver IC that is ideal for use in printers, cameras and other portable devices.

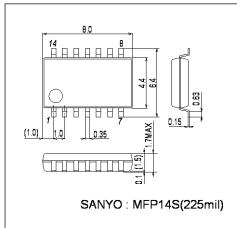

Functions

- Low voltage operation (2.5V min)
- Low saturation voltage (upper transistor + lower transistor residual voltage: 0.40V at 400mA)
- Built-in through-current prevention circuit
- Separate logic power supply and motor power supply
- Built-in spark killer diodes
- Built-in thermal shutdown circuit
- Compact package: MFP14S

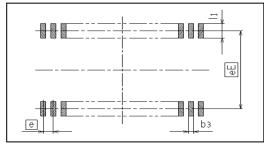
Typical Applications

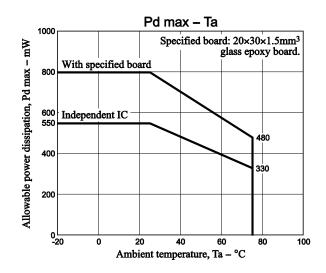
- Automotive speed meter
- Security Camera
- Thermal Printer Unit

Pin Assignment


Note: Both GND pins should be connected to ground.

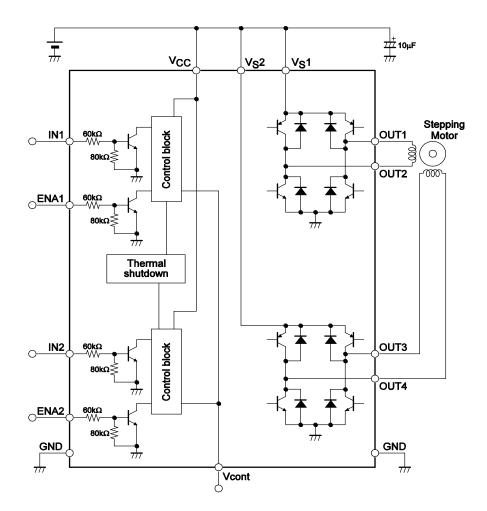
• Camera


• POS 、Card Terminal


Package Dimensions

unit : mm (typ) 3111A

Recommended Soldering Footprint



(Unit:mr					
Reference Symbol	MFP14S (225mil)				
еE	5.70				
е	1.00				
b3	0.47				

1.10

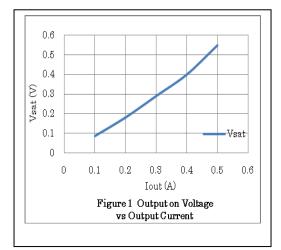
11

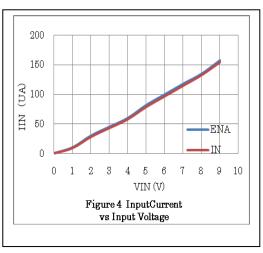
Block Diagram

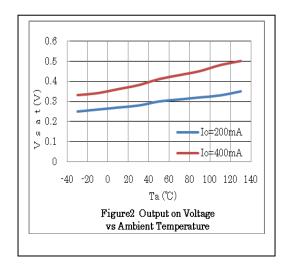
Note: As long as the voltages applied to V_{CC}, V_S1, V_S2, ENA1, ENA2, IN1, and IN2 are within the limits set by the absolute maximum ratings, there are no restrictions on the relationship of each voltage level in comparison with the others (regarding which is higher or lower). (ex. $V_{CC} = 3V$, $V_{S}1$, 2 = 2V, ENA = IN = 5V)

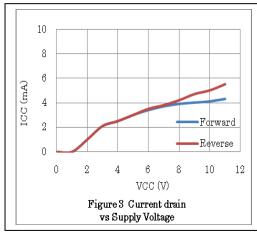
Specifications

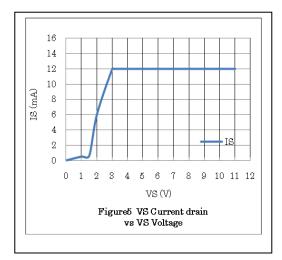
Absolute Maximum Ratings at Ta = 25°C

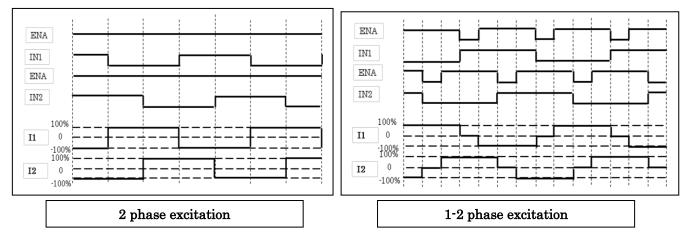

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		-0.3 to +10.5	V
	V _S max		-0.3 to +10.5	V
Output applied voltage VOUT			V _S +V _{SF}	V
Input applied voltage	VIN		-0.3 to +10	V
Ground pin flow-out current	IGND	Per channel	1.0	А
Allowable power dissipation	Pd max	Independent IC	550	mW
		Mounted on a specified board *	800	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-40 to +125	°C


* Specified board: 20mm \times 30mm \times 1.6mm, glass epoxy board. Allowable Operating Ranges at Ta = 25°C


Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		2.5 to 9.0	VV
	٧ _S		1.8 to 9.0	V
Input high-level voltage	VIH		1.8 to 9.0	V
Input Low-level voltage	VIL		-0.3 to +0.7	V


Electrical Characteristics at Ta = 25° C, V_{CC} = 3V

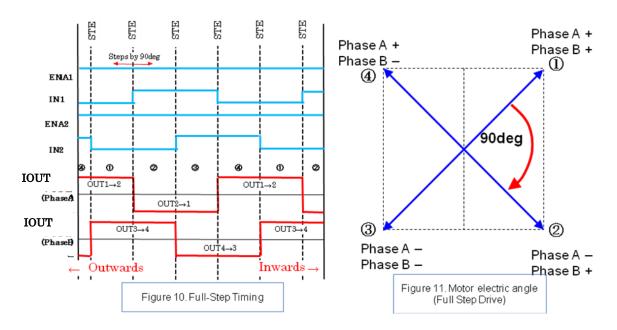

			Ratings			
Parameter	Symbol	Conditions	min	typ	max	Unit
Current drain	ICC0	ENA1,2 = 0V, V _{IN} 1 = 3V or 0V		0.1	10	μΑ
	I _{CC} 1	ENA1 = 3V, V _{IN} 1 = 3V or 0V		12	18	mA
Output saturation voltage	V _{OUT} 1	ENA = 3V, V_{IN} = 3V or 0V, I_{OUT} = 200mA		0.2	0.28	V
	V _{OUT} 2	ENA = 3V, V_{IN} = 3V or 0V, I_{OUT} = 400mA		0.4	0.6	V
Input current	IIN	$V_{CC} = 6V, V_{IN} = 6V$			200	μA
	IENA	$V_{CC} = 6V, ENA = 6V$			200	μΑ
Output sustaining voltage	V _O (SUS)	I _{OUT} = 400mA	9			V
Spark killer diode						
Reverse current	I _S (leak)	V _{CC} 1, V _S = 7V			30	μΑ
Forward voltage V _{SF}		I _{OUT} = 400mA			1.7	V


Pin No.	Pin name	Pin function	Equivalent Circuit
1	Vcc	Power-supply voltage pin. (signal supply) V_{CC} voltage is impressed. The permissible operation voltage is from 2.5 to 9.0(V). The capacitor is connected for stabilization for GND pin (7pin,14pin).	
4 11	VS1 VS2	Power-supply voltage pin. (motor supply) The permissible operation voltage is from 1.8 to 9.0(V). The capacitor is connected for stabilization for GND pin (7pin,14pin).	
2	ENA1	Motor stand-by (start-stop pin) control input pin. Start-stop control input pin of OUT1 (3pin) and OUT2 (5pin) The digital input it, range of the "L" level input is 0 to 0.7(V), range of the "H" level input is from 1.8 to 9.0(V). Pull-down resistance $30(k\Omega)$ is built into in the pin. It combines with ENA2 pin (4pin) and it uses it.	30KΩ
6	IN1	Motor forward-reverse (direction pin) control input pin. Direction control input pin of OUT1 (3pin) and OUT2 (5pin). It combines with IN2 pin (9pin) and it uses it. With built-in pull-down resistance.	30K
13	ENA2	Motor stand-by (start-stop pin) control input pin. Start-stop control input pin of OUT3 (12pin) and OUT4 (10pin). It combines with ENA1 pin (2pin) and it uses it. With built-in pull-down resistance.	¦/
9	IN2	Motor forward-reverse (direction pin) control input pin. Direction control input pin of OUT3 (12pin) and OUT4 (10pin). It combines with IN1 pin (6pin) and it uses it. PWM can be input. With built-in pull-down resistance.	
7,14	GND	Ground pin.	
8	Vcont	Pre-drive monitor terminal. Please refer to Vcontpin explanation.	
10	OUT4	Driving output pin. The motor coil is connected between terminal OUT3 (12pin).	
12	OUT3	Driving output pin. The motor coil is connected between terminal OUT4 (10pin).	
5	OUT2	Driving output pin. The motor coil is connected between terminal OUT1 (3pin).	
3	OUT1	Driving output pin. The motor coil is connected between terminal OUT2 (5pin).	GND

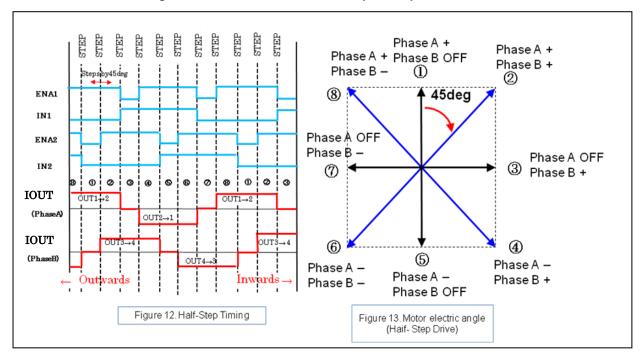
Operation explanation 1. LB1838M Input-Output Logic Truth Table

IN1,2	ENA1,2	OUT1,3	OUT2,4	Mode
L	Н	Н	L	Forward
Н	Н	L	Н	Reverse
L	L	OFF	OFF	Standby
Н	L	OFF	OFF	Standby

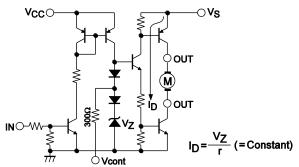
2. Stepping motor operation Sequence


Example of current wave type in each excitation mode when stepping motor parallel input is controlled.

3. Theory


Full-Step MODE

The motor moves 90 degrees in an electric corner when I input 1Step.



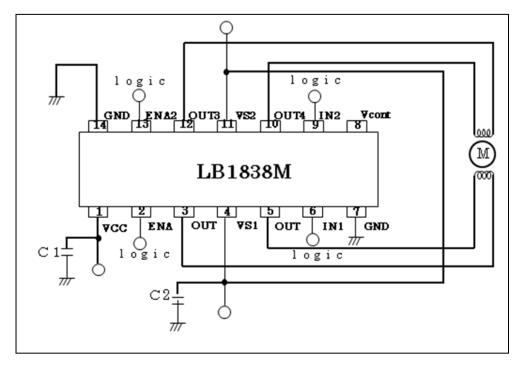
Half-Step MODE

6. Vcont pin

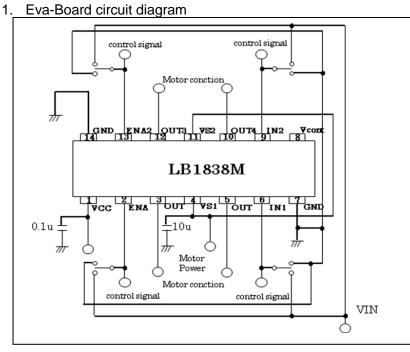
As shown in the left diagram, the Vcont pin outputs the voltage of the band gap Zener $V_Z + V_F$ (= 1.93V). In normal use, this pin is left open.

The drive current I_D is varied by the Vcont voltage. However, because the band gap Zener is shared, it functions as a bridge.

The motor can stop by making vcont terminal GND in emergency.

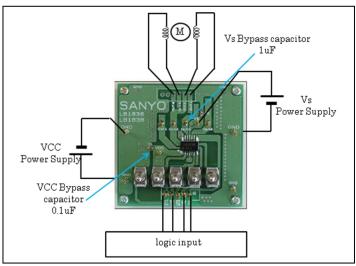

7. Thermal Shutdown circuit

The thermal shutdown circuit in incorporated and the output is turned off when junction temperature Tj exceeds 180°C and the abnormal state warning output is turned on. As the temperature falls by hysteresis, the output turned on again (automatic restoration). The thermal shutdown circuit does not guarantee the protection of the final product because it operates when the temperature exceed the junction temperature of Tjmax=150°C.


TSD = $180^{\circ}C$ (typ) $\Delta TSD = 40^{\circ}C$ (typ)

Application Circuit Example

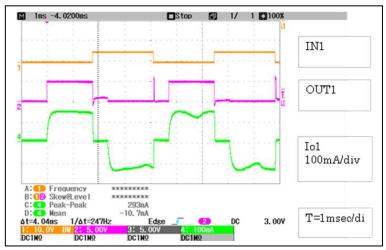
Example of applied circuit with one stepping motor


Eva-Board Manual

Bill of Materials for LB1838M Evaluation Board

Designator	Qty	Description	Value	Tol	Footprint	Manufacturer	Manufacturer Part Number	Substitution Allowed	Lead Free
IC1	1	Motor Driver			MFP14S (225mil)	SANYO semiconductor	LB1838M	No	Yes
C1	1	VCC Bypass capacitor	1µF 50V			KOA	GRM188B11A 105K	Yes	Yes
C2	1	Vs Bypass capacitor	0.1u 100v			Murata	GRM188R72A 104KA35D	Yes	Yes
SW1-SW4	4	Switch				MIYAMA	MS-621-A01	Yes	Yes
TP1-TP11	14	Test points				MAC8	ST-1-3	Yes	Yes

2. (1) One stepping motor drive


- (2) stepping motor drive connection explanation
- Connect a stepping motor with OUT1, OUT2, OUT3 and OUT4.
- Connect the motor power supply with the terminal VCC, the control power supply with the terminal VIN. Connect the GND line with the terminal GND.
- STP motor drives it in an 2 phase excitation, 1-2 phase excitation by inputting an input signal such as follows into ENA1,N1,ENA2,IN2.

Waveform of LB1838M evaluation board when driving stepping motor

• Full-Step Drive VCC=5V、VS=5V 1000pps

•Half-Step Drive VCC=5V VS=5V 1600pps

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of May, 2011. Specifications and information herein are subject to change without notice.