

Ultra Small, Low Power Consumption Voltage Detector

FEATURES

- Accuracy ± 2% at V_{DF} ≥ 1.5 V or ±0.03 V
- Low Power Consumption at 0.6 μ A typical at $V_{DF} = 2.7 \text{ V}$, $V_{IN} = 2.97 \text{ V}$
- Detect Voltage Range 0.7 V 5.0 V in 0.1 V increments
- Operating Voltage Range 0.7 V 6.0 V
- Detect Voltage Temperature Drift ±100 ppm/⁰C
- Output Configuration CMOS (Version C) or Nchannel Open Drain (N Version)
- Operating Ambient Temperature 40 + 85^oC
- Packages: USP-3 and SSOT-24
- EU RoHS Compliant, Pb Free

APPLICATIONS

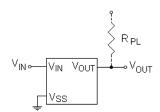
- Microprocessor reset circuitry
- · Memory battery back-up circuits
- Power-on reset circuits
- Power failure detection
- System battery life and charge voltage monitors

DESCRIPTION

The IXD5120 are highly precise, low power consumption, CMOS voltage detectors, manufactured using laser trimming technology.

With low power consumption and high accuracy, the series is suitable for precision mobile equipment.

The IXD5120 in ultra small packages are ideally suited for high-density PC boards.


The IXD5120 is available in both CMOS and N-channel open drain output configurations

Detector is available in USP-3 and SSOT-24 packages.

TYPICAL APPLICATION CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTIC

Pull-up Resistor R_{PL} used with N-channel output configuraation only

ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNITS			
Input Voltage	Input Voltage		V _{IN}	− 0.3 ~ + 7.0	V		
Output Current		I _{out}	10	mA			
Output	CMOS	Output	V _{OUT}	$-0.3 \sim V_{IN} + 0.3$	V		
Voltage	N-chan	nel Open Drain		− 0.3 ~ + 7.0	V		
Bower Dissipa	Power Dissipation ²⁾ USP-3 SSOT-24		usp-3		Pn	120	mW
Power Dissipa			P _D	150	IIIVV		
Operating Temperature Range		T _{OPR}	− 40 ~ + 85	°C			
Storage Temp	erature Ra	ange	T _{STG}	− 55 ~ + 125	°C		

All voltages are in respect to $V_{\mbox{\scriptsize SS}}$

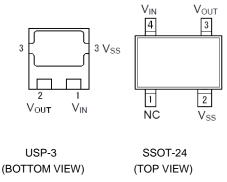
ELECTRICAL OPERATING CHARACTERISTICS

Ta = 25 °C

							Ta = 25 ℃	j.
PARAMETER	SYMBOL		CONDITIONS	MIN.	TYP.	MAX.	UNIT	CIRCUIT
Operating Voltage	V _{IN}		$V_{DF(T)} = 1.0 - 5.0 \text{ V}^{1)}$	0.7		6.0	V	
Detect Voltage	V_{DF}		$V_{DF(T)} = 1.0 - 5.0 \text{ V}$		E-1 ²⁾		V	①
Hysteresis Width	V _{HYS}		$V_{DF(T)} = 1.0 - 5.0 \text{ V}$	V _{DF} x 0.03	V _{DF} x 0.05	V _{DF} x 0.07	V	①
Supply Current1	I _{SS1}		$V_{IN} = V_{DF(T)} \times 1.1$		E-2 ²⁾		μΑ	2
Supply Current2	I _{SS2}		$V_{IN} = V_{DF(T)} \times 0.9$		E-3 ²⁾		μΑ	①
			V _{OUT} = 0.5 V	0.09	0.57			
		$V_{IN} = 0.7 \text{ V}$	V _{OUT} = 0.3 V	0.08	0.56			
			V _{OUT} = 0.1 V	0.05	0.30			
0	I _{OUTN} V	V _{IN} = 1.0 V	$V_{OUT} = 0.1 \text{ V}, 1.0 \text{ V} < V_{DF(T)} \le 2.0 \text{ V}$	0.46	0.71		4	
Output Current		$V_{IN} = 2.0 \text{ V}$	$V_{OUT} = 0.1 \text{ V}, 2.0 \text{ V} < V_{DF(T)} \le 3.0 \text{ V}$	1.15	1.41		mA	3
		$V_{IN} = 3.0 \text{ V}$	$V_{OUT} = 0.1 \text{ V}, 3.0 \text{ V} < V_{DF(T)} \le 4.0 \text{ V}$	1.44	1.77			
		$V_{IN} = 4.0 \text{ V}$	$V_{OUT} = 0.1 \text{ V}, 4.0 \text{ V} < V_{DF(T)}$	1,61	1.96			
	I _{OUTP} ³⁾	$V_{IN} = 6.0 \text{ V}$	V _{OUT} = 5.5 V		-0.96	-0.60		
Laskawa Cumant		Version C	$V_{IN} = V_{DF(T)} \times 0.9, V_{OUT} = 0 \text{ V}$		-0.001			3
Leakage Current I _{LEAK}		Version N	$V_{IN} = 6.0 \text{ V}, V_{OUT} = 6.0 \text{ V}$		0.001	0.10	μΑ	9
Detect Voltage Temperature Characteristics	$\frac{\Delta V_{DF}}{V_{DF}*\Delta T_{OPR}}$	- 40 °C ≤ T _{OPR} ≤ 85 °C			± 100		ppm/°C	1
Detect Delay Time4)	t _{DF}	$V_{IN} = 6.0 \text{ V}$ -	\rightarrow 0.7 V, from V _{IN} = V _{DF} to V _{OUT} = 0.5 V		30	100	μs	4
Release Delay Time ⁵⁾	t _{DR}	$V_{IN} = 0.7 \text{ V}$	\rightarrow 6.0 V, from $V_{IN} = V_{DR}$ to $V_{OUT} = V_{DR}^{(6)}$		20	100	μs	4

NOTE:

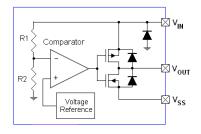
- 1) V_{DF(T)} is a nominal detect voltage
- 2) Please refer to the table named Detect Voltage Accuracy and Supply Current Specifications
- 3) IXD5120C version only
- 4) Delay time from the moment, when $V_{IN} = V_{DF}$ to the moment, when $V_{OUT} = 0.5$ V, at V_{IN} falling from 6.0 V to 0.7 V
- 5) Delay time from the moment, when $V_{IN} = V_{DR}$ to the moment, when $V_{OUT} = V_{DR}$
- Release voltage $(V_{DR} = V_{DF} + V_{HYS})$

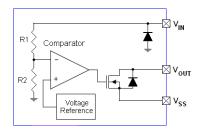

ELECTRICAL OPERATING CHARACTERISTICS (CONTINUED)

Detect Voltage Accuracy and Supply Current Specification

SYMBOL	E	i-1	E	-2	E	-3
NOMINAL DETECT	DETECT VOLTAGE		SUPPLY CURRENT1		SUPPLY C	URRENT2
VOLTAGE		- (V)		(μA)	I _{SS2}	
$V_{DF(T)}$	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.
1.0	0.970	1.030				
1.1	1.070	1.130	1			
1.2	1.170	1.230	1			
1.3	1.270	1.330	1			
1.4	1.370	1.430	0.5	4.4	0.4	4.05
1.5	1.470	1.530	0.5	1.4	0.4	1.35
1.6	1.568	1.632	1			
1.7	1.666	1.734	1			
1.8	1.764	1.836	1			
1.9	1.862	1.938	1			
2.0	1.960	2.040				
2.1	2.058	2.142	1			
2.2	2.156	2.244	1			
2.3	2.254	2.346	1	4.7	0.5	4.00
2.4	2.352	2.448	0.6	1.7	0.5	1.60
2.5	2.450	2.550	1			
2.6	2.548	2.652	1			
2.7	2.646	2.754	1			
2.8	2.744	2.856				
2.9	2.842	2.958	1			
3.0	2.940	3.060	1			
3.1	3.038	3.162	1			
3.2	3.136	3.264	1			
3.3	3.234	3.366				
3.4	3.332	3.468				
3.5	3.430	3.570	1			
3.6	3.528	3.672	1			
3.7	3.626	3.774	1			
3.8	3.724	3.876	1			
3.9	3.822	3.978	0.7	1.9	0.6	1.80
4.0	3.920	4.080	1			
4.1	4.018	4.182	1			
4.2	4.116	4.284	1			
4.3	4.214	4.386	1			
4.4	4.312	4.488	1			
4.5	4.410	4.590	1			
4.6	4.508	4.692	7			
4.7	4.606	4.794	1			
4.8	4.704	4.896	1			
4.9	4.802	4.998	1			
5.0	4.900	5.100	1			

PIN CONFIGURATION

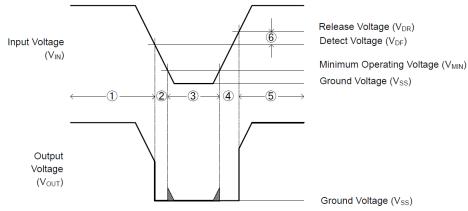



PIN ASSIGNMENT

PIN N	UMBER	PIN NAME	FUNCTIONS
USP-3	SSOT-24	FIN NAIVIE	FUNCTIONS
1	4	V _{IN}	Power Input
2	3	V _{OUT}	Output Voltage (Detect "LOW")
3	2	V _{SS}	Ground
	1	NC	No Connection

BLOCK DIAGRAM

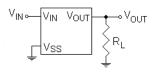
IXD5120C IXD5120N

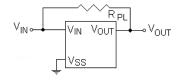


Diodes inside the circuits are ESD protection diodes and parasitic diodes.

BASIC OPERATION

Operation of the IXD5120 in a typical application circuit is exlained by the timing diagram shown below.




Note: To simplfy explanation, an operation time of the circuit is not included.

- ① When input voltage V_{IN} is higher than detect voltage V_{DF} , output voltage V_{OUT} is equal input voltage V_{IN} . (Output of the IXD5120N version with N-channel open drain is in high impedance state.)
- $^{\circ}$ When input voltage V_{IN} falls below detect voltage V_{DF} , output voltage V_{OUT} becomes equal to the ground voltage V_{SS} level.
- ③ When input voltage V_{IN} falls below minimum operating voltage V_{MIN} , output becomes unstable. In this condition, V_{OUT} is equal pull-up voltage, which is V_{IN} in typical application.
- 9 When input voltage V_{IN} rises above the minimum operating voltage V_{MIN} , output keeps the ground voltage level V_{SS} , until V_{IN} becomes equal or higher than a release voltage V_{DR} .
- $^{\circ}$ When the input voltage V_{IN} rises above the release voltage V_{DR} , output voltage V_{OUT} becomes equal to the input voltage V_{IN} . (Output of the IXD5120N version with N-channel open drain is in high impedance state.)
- \odot The difference between V_{DR} and V_{DF} represents the hysteresis width.

TYPICAL APPLICATION CIRCUIT

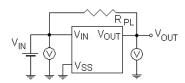
IXD5120C

IXD5120N

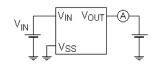
LAYOUT AND USE CONSIDERATIONS

- 1. The IC may malfunction if absolute maximum ratings are exceeded.
- To stabilize the IC's operations, please, ensure that V_{IN} rise and fall times are more than several µs/V.
- 3. IXD5120N version with N-channel open drain configuration is recommended, when a resistive divider is used to set V_{IN} voltage (see figure below). Voltage drop at resistor R_{IN} caused by supply and load currents, changes level of detect and release voltages. Those errors are not constant because of the fluctuation of currents. In addition, oscillation may occur if voltage drop caused by load or transient current exceeds hysteresis $V_{HYS} = V_{DR}$. In such cases, please ensure that R_{IN} is less than 10 k Ω and that C is more than 0.1 μ F.

IXD5120N Recommended Pull-up Resistors Value

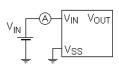

INPUT VOLTAGE RANGE	PULL-UP RESISTANCE
0.7V~6.0V	≥ 220kΩ
0.8V~6.0V	≥ 100kΩ
1.0V~6.0V	≥ 33kΩ

4

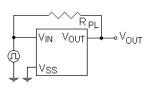


TEST CIRCUITS

Circuit ①



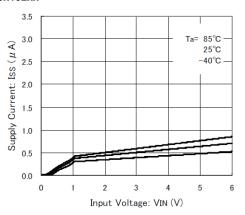
Circuit 3

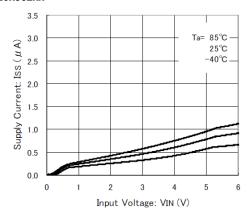


Pull-up Resistor R_{PL} = 100 $k\Omega$ is used for IXD5120N version only

Circuit ②

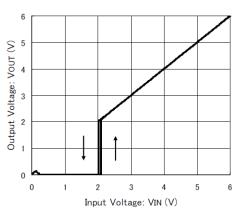
Circuit



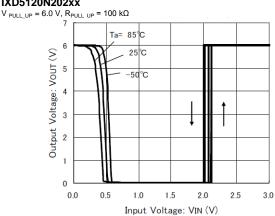

TYPICAL PERFORMANCE CHARACTERISTICS

(1) Supply Current vs. Input Voltage

IXD5120x102xx

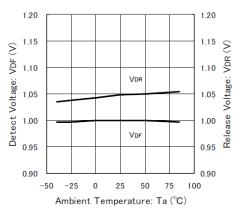


IXD5120x502xx

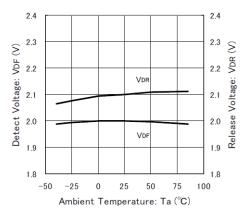


(2) Output Voltage vs. Input Voltage

IXD5120C202xx $Ta = 25^{\circ}C$



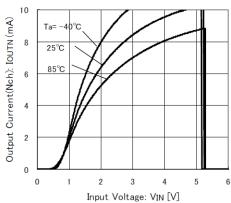
IXD5120N202xx



(3) Detect Voltage, Release Voltage vs. Ambient Temperature

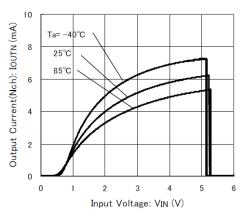
IXD5120x102xx

IXD5120x202xx

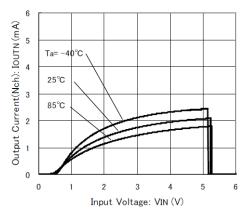


TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(4) Output Current (N-channel transistor) vs Input Voltage

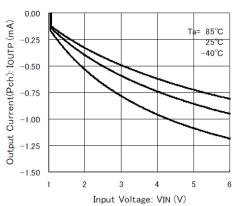

IXD5120x502xx

 $V_{OUT} = 0.5 \ V$

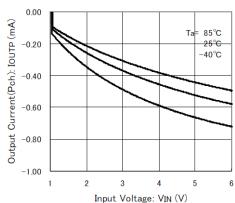

IXD5120x502xx

 $V_{OUT} = 0.3 V$

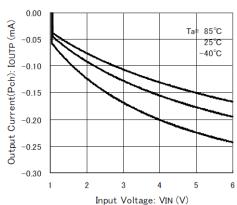
IXD5120x502xx


 $V_{OUT} = 0.1 \text{ V}$

(5) Output Current (P-channel transistor) vs. Input Voltage


IXD512C102xx

 $V_{OUT} = V_{IN} - 0.5 V$


IXD512C102xx

 $V_{OUT} = V_{IN} - 0.3 V$

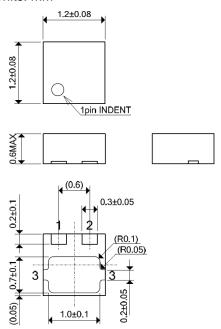
IXD512C102xx

 $V_{OUT} = V_{IN} - 0.1 V$

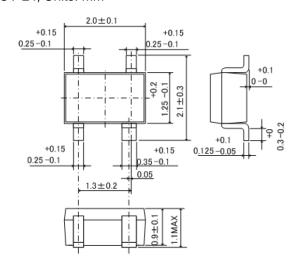
ORDERING INFORMATION

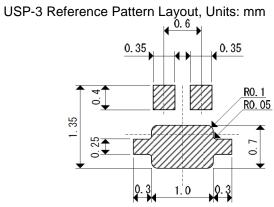
IXD5120①②③④⑤⑥-⑦

DESIGNATOR	DESCRIPTION	SYMBOL	DESCRIPTION
0	Output Configuration		CMOS output
U	Output Configuration	Ν	N-channel open drain output
23	Detect Voltage (V _{DF})	10 - 50	Detect Voltage Range: 1.0 V \sim 5.0 V, e.g. 1.2 V - ② = 1, ③ = 2
4	Detect Threshold Accuracy	2	±2%
		HR	USP-3 (3000/Reel)
\$6-⑦ ^(*)	Packages (Order Unit)	HR-G	USP-3 (1000/Reel)
3 6- 0		NR	SSOT-24 (3000/Reel)
		NR-G	SSOT-24 (3000/Reel)

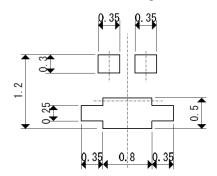

NOTE:

The "-G" suffix denotes Halogen and Antimony free as well as being fully RoHS compliant.



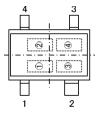

PACKAGE DRAWING AND DIMENSIONS

USP-3, Units: mm



SSOT-24, Units: mm

USP-3 Reference Metal Mask Design



MARKING

SSOT-24

① Represents output configuration and detect voltage range

MARK	OUTPUT CONFIGURATION	OUTPUT VOLTAGE	PRODUCT SERIES
K	CMOS	1.0V~2.9V	IXD5120C
L	CIVIOS	3.0V~5.0V	
М	N shannel open drain	1.0V~2.9V	IXD5120N
N	N-channel open drain	3.0V~5.0V	

SSOT-24 (Top View)

② Represents detect voltage

MARK	DETECT VO	DETECT VOLTAGE (V)		DETECT VO	OLTAGE (V)
0	-	3.0	F	1.5	4.5
1	-	3.1	Н	1.6	4.6
2	-	3.2	K	1.7	4.7
3	-	3.3	L	1.8	4.8
4	-	3.4	М	1.9	4.9
5	-	3.5	N	2.0	5.0
6	-	3.6	Р	2.1	-
7	-	3.7	R	2.2	-
8	-	3.8	S	2.3	-
9	-	3.9	Т	2.4	-
Α	1.0	4.0	U	2.5	-
В	1.1	4.1	V	2.6	-
С	1.2	4.2	Х	2.7	-
D	1.3	4.3	Y	2.8	=
Е	1.4	4.4	Z	2.9	-

3 @ Represents production lot number

01 to 09, 10, 11, ..., 99, 0A, ..., 0Z, 1A, ...repeated.(G, I, J, O, Q, W excluded)

USP-3

① Represents product series

MARK	PRODUCT SERIES
0	IXD5120xxxxxx

USP-3 (Top View)

② Represents output configuration and integer number of the detect voltage

MARK	DETECT VOLTAGE (V)	OUTPUT CONFIGURATION	MARK	DETECT VOLTAGE (V)	OUTPUT CONFIGURATION
Α	1.x		F	1.x	
В	2.x		Н	2.x	
С	3.x	CMOS Output	K	3.x	N-channel open drain
D	4.4		Ĺ	4.4	
E	5.x		М	5.x	

3 Represents decimal point of the detect voltage

MARK	DETECT VOLTAGE (V)	PRODUCT SERIES
3	x.3	IXD5120xx3xxx
0	x.0	IXD5120xx0xxx

4 S Represents production lot number

01 to 09, 10, 11, ..., 99, 0A, ..., 0Z, 1A, ...repeated.(G, I, J, O, Q, W excluded)

Customer Support

To share comments, get your technical questions answered, or report issues you may be experiencing with our products, please visit Zilog's Technical Support page at http://support.zilog.com. To learn more about this product, find additional documentation, or to discover other fac-ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum. This publication is subject to replacement by a later edition. To determine whether a later edition exists, please visit the Zilog website at http://www.zilog.com.

Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer ©2015 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering.