

■ Photocoupler Lineup

<Phototransistor output type>

Package type	Output type	Features		Model No. (series)	Page
Mini-flat 4-pin Compact, SMT type	Single phototransistor	General purpose, High collector-emitter voltage, etc.		PC35x series / PC451J00000F	41
			Low input current	PC367NJ0000F	41
•		AC input response		PC354NJ0000F	41
-		High sensitivity,	Low input current	PC364NJ0000F	41
	Darlington phototransistor	High collector-emitter voltage		PC355NJ0000F / PC452J00000F	41
		-	Low input current	PC365NJ0000F	41
Compact, Half pitch (lead space), SMT type	Single phototransistor	General purpose, High resistance to noise, etc.		PC3Hx series	42
			Reinforced insulation	PC3HU7xYIP0B	42
•			Low input current	PC3H71xNIP0F	42
- 4		AC input response		PC3H3J00000F / PC3H4J00000F	42
			Low input current	PC3H41xNIP0F	42
	Darlington phototransistor	High sensitivity		PC3H5J00000F	42
			Low input current	PC3H510NIP0F	42
DIP type (4-pin)	Single phototransistor	Reinforced insulation		PC123XNNSZ0F	43
(4-pin, DIP type)		General purpose,	Low input current	PC1231xNSZ0X	43
_		High collector-emitter voltage, etc.		PC817XNNSZ0F / PC851XNNSZ0F	43
			Low input current	PC8171xNSZ0X	43
٧.	Darlington phototransistor	High sensitivity, High collector-emitter voltage		PC815XNNSZ0F / PC852XNNSZ0F / PC853XNNSZ0F	43
			Low input current	PC81510NSZ0X	43
DIP type (6-pin)	Single phototransistor	General purpose, High collector-emitter voltage, etc.		PC7xxV0NSZXF	44
	Darlington phototransistor	High sensitivity, High collector-emitter voltage, etc.		PC7x5V0NSZXF	44

<OPIC output type>

Package type	Output type	Features	Model No. (series)	Page
			PC400J00000F / PC456L0NIP0F ▲ / PC410S0NIP0F / PC410L0NIP0F /	
Compact, SMT type	Digital output	General purpose, High response speed, 2ch, etc.	PC4D10SNIP0F	45
	Analog/Digital output	High CMR	PC457S0NIP0F / PC457L0NIP0F	45
DIP type, SMT type	Digital output	General purpose	PC900V0NSZXF	46
			PC925LxNSZ0F / PC942J00000F ▲ /	
	Built-in base amplifier	For inverter control, Built-in short-circuit protection circuit	PC928J00000F / PC929J00000F	46_

The model marked with ▲ may not be available in the near future. Contact with SHARP for details before use.

■ Photocouplers

♦Phototransistor Output Type

<Compact, SMT type> O: Approved $(Ta = 25^{\circ}C)$ Approved Absolute maximum ratings Electro-optical characteristics by safety Current transfer ratio Isolation Response time Output type Collector Internal standards* Forward voltage emitter Model No. connection Features Package current (AC) voltage VCF diagram VCE lc Viso (µs) TYP. (%)UL VCEO (mA) (V) (mA) (Ω) (V) (mA) (rms) MIŃ. (V) (kV) PC357NJ0000F O* 5 2 General purpose 50 3.75 80 50 5 4 2 100 General purpose. PC352NJ0000F▲ \bigcirc 50 3.75 80 90 5 5 4 2 100 2 Single phototransistor output high resistance to noise*1 High collector-emitter PC451J00000F O* 50 3.75 350 40 5 5 4 2 100 2 voltage Low input current, PC367NJ0000F 0 10 3.75 80 100 0.5 4 2 100 2 5 high resistance to noise*1 PC354NJ0000F O* 2 AC input response Mini-flat ±50 3.75 80 20 ±1 5 4 2 100 4-pin Low input current, PC364NJ0000F 2 2 AC input response, \bigcirc ±10 3.75 80 50 ±0.5 5 4 100 high resistance to noise*1 PC355NJ0000F O* 50 3.75 600 2 High sensitivity 35 1 2 60 2 100 Darlington photo-transistor output High sensitivity, PC365NJ0000F 0 10 3.75 35 600 0.5 2 60 10 100 2 low input current High collector-emitter PC452J00000F 0* 50 3.75 350 1 000 1 2 100 20 100 2

The model marked with ▲ may not be available in the near future. Contact with SHARP for details before use.

voltage

^{*1} CMR: MIN.10 kV/µs

^{*2} Please refer to Specification Sheets for model numbers approved by safety standards.

A VDE approved type is optionally available.

♦Phototransistor Output Type Compact half pitch (lead space) SMT types

<(Compact, half	pitch (lead	l space) SMT type>		- ○: Appr	oved							T)	a = 25	5°C)
				Approved			maximur			Electro	-optica	l char	acteris	stics	
Output type	Model No.	Internal connection	Features	by safety standards*3				Collector- emitter	Curr	ent trar ratio	nsfer	Re	espon	se time	e
Outpu	Model No.	diagram	reatures	UL	Package	current IF (mA)	(AC) Viso (rms) (kV)	voltage VCEO (V)	CTR (%) MIN.	IF (mA)	VCE (V)	tr (µs) TYP.	Ic (mA)		VCE (V)
	PC3HU7xYIP0B		Reinforced insulation (internal insulation distance: MIN. 0.4 mm), low-profile package	○*4, 5	Low- profile mini-flat 4-pin	50	3.75	80	50	5	5	4	2	100	2
output	PC3H7J00000F		Standard	○*6		50	2.5	80	20	1	5	4	2	100	2
ransistor	PC3H71xNIP0F		High resistance to noise*1, low input current	0		10	2.5	80	100	0.5	5	4	2	100	2
Single phototransistor output	PC3H3J00000F		AC input response, high resistance to noise*1		Mini-flat 4-pin	±50	2.5	80	20	±1	5	4	2	100	2
Sing	PC3H4J00000F		AC input response	○*2 , 6		±50	2.5	80	20	±1	5	4	2	100	2
	PC3H41xNIP0F		AC input response, high resistance to noise*1, low input current	0		±10	2.5	80	50	±0.5	5	4	2	100	2
Darlington photo- transistor output	PC3H5J00000F	<u> </u>	High sensitivity	0	Mini-flat	50	2.5	35	600	1	2	60	2	100	2
Darlingto transisto	PC3H510NIP0F	<u>₩</u>	High sensitivity, low input current	0	4-pin	10	2.5	35	600	0.5	2	60	2	100	2

CMR: MIN.10 kV/µs

 ^{**}OMK: MIN. 10 KV/JS
 A VDE approved type is optionally available.
 **2 A VDE approved type is optionally available.
 **4 VDE, CSA approved
 **5 In conformance with BSI, SEMKO, DEMKO, NEMKO, and FIMKO
 **6 UL, cUL approved

♦Phototransistor Output Type <DIP type (4-pin)>

- O: Approved

(Ta = 25°C)

-		Internal		Aŗ	prove	d by		Absolu	te maximu	m ratings	Electro-	optical ch	aracter	ristics
: type				safet	y stan	dards*8		Forward	Isolation voltage	Collector- emitter	Current tra	nsfer ratio	Respons	se time
Output type	Model No.	connection diagram	Features	UL	VDE *2	Others *3	Package	current IF (mA)	(AC) Viso (rms) (kV)	voltage VCEO (V)	CTR (%) MIN.	IF (mA)	tr (µs) TYP.	RL (Ω)
ıt.	PC123XNNSZ0F*1, *5, *6, *7		High isolation voltage, reinforced insulation	0	0	0		50	5.0	70	50	5	4	100
Single phototransistor output	PC1231xNSZ0X*1	*	High isolation voltage, reinforced insulation, low input current, high resistance to noise*4	0	0	0		10	5.0	70	50	0.5	4	100
ototransis	PC817XNNSZ0F*5, *6, *7		High isolation voltage	0	1	○*9		50	5.0	80	50	5	4	100
ingle pho	PC8171xNSZ0X*5, *6		High isolation voltage, low input current, high resistance to noise*4	0	ı	_		10	5.0	80	100	0.5	4	100
0)	PC851XNNSZ0F*5, *6	<u>₩</u>	High isolation voltage, high collector-emitter voltage	0	1	_	4-pin DIP	50	5.0	350	40	5	4	100
r output	PC815XNNSZ0F*5, *6		High isolation voltage, high sensitivity	0	ı	ı	5"	50	5.0	35	600	1	60	100
Darlington phototransistor output	PC81510NSZ0X		High isolation voltage, high sensitivity, low input current	0	1	_		10	5.0	35	600	0.5	60	100
ngton ph	PC852XNNSZ0F*5, *6		High isolation voltage, high collector-emitter voltage	0	0	_		50	5.0	350	1 000	1	100	100
Darli	PC853XNNSZ0F*5, *6	<u>₩</u>	High isolation voltage, high collector-emitter voltage	0	0	_		50	5.0	350	1 000	1	100	100

- *1 Wide lead spacing type is also available. Creepuge.
 *2 Optionally available.
 *3 BSI, SEMKO, DEMKO, NEMKO, FIMKO, CSA
 *4 CMR: 10 kV/µs MIN.
 *5 Lead forming type is also available for surface mounting.
 *6 Taped package of lead forming type for surface mounting is also available.
 *7 Wide lead spacing type is also available. Compatible with wide lead spacing type lead-forming models for surface-mount use.
 *8 Please refer to Specification Sheets for model numbers approved by safety standards.

♦Phototransistor Output Type <DIP type (6-pin)>

— ○: Approved, △: Under application

 $(Ta = 25^{\circ}C)$

				Appr	roved		Absolu	te maximun	n ratings	Electro	-optical c	haracte	ristics
Output type	Model No.	Internal connection	Features	by s	afety ards*2	Package	Forward current	Isolation voltage	Collector- emitter	Current ra	transfer tio		onse
Outp		diagram	7 52.5.5	UL	VDE*1	. donago	IF (mA)	(AC) Viso (rms) (kV)	voltage VCEO (V)	CTR (%) MIN.	IF (mA)	tr (µs) TYP.	R _L (Ω)
or output	PC714V0NSZXF		High isolation voltage	0	0		50	5.0	80	50	5	4	100
Single phototransistor output	PC724V0NSZXF	DI DI	High isolation voltage, large input current	0	-		150	5.0	35	20	100	4	100
Single ph	PC713V0NSZXF		High isolation voltage, with base terminal	0	0		50	5.0	80	50	5	4	100
Darlington phototransistor output	PC715V0NSZXF	A	High isolation voltage, high sensitivity	0	0	6-pin DIP	50	5.0	35	600	1	60	100
Darlington photol	PC725V0NSZXF		High isolation voltage, high sensitivity, high collector-emitter voltage, high power	0	0		50	5.0	300	1 000	1	100	100

^{*1} Optionally available.
*2 Please refer to Specification Sheets for model numbers approved by safety standards.

♦ OPIC Output ("OPIC" (Optical IC) is a trademark of SHARP Corporation. An OPIC consists of a light-detecting element and signal-processing circuit integrated onto a single chip.

<compact, s<="" th=""><th>SMT type:</th><th>> (1-1)</th><th></th><th>-c</th><th>: Approv</th><th>ed</th><th></th><th></th><th></th><th></th><th></th><th></th><th>(Ta =</th><th>= 25°C)</th></compact,>	SMT type:	> (1-1)		-c	: Approv	ed							(Ta =	= 25°C)
			sa	ved by fety			maximum ngs		Electro	o-optica	al char	acteristic	s*1	
	Internal		stand	ards*2		Forward	Isolation	Lo	w level outpu	ut volta	ge	Thresho	ld input	current
Model No.	connection diagram	Features	UL	VDE*3	Package	current IF (mA)	voltage (AC) Viso (rms) (kV)	Vol (V) MAX.	Ta (°C)	IoL (mA)	IF (mA)	IFHL (mA) MAX.	IFLH (mA) MAX.	RL (Ω)
PC400J00000F	A S	Digital output, normal-off operation	0	_		50	3.75	0.4	0 to +70	16	4	2.0	_	280
PC456L0NIP0F▲	A L	Built-in preamplifier, high speed transmission (2 Mb/s), for flow soldering	0	0	Mini-flat 5-pin	25	3.75	0.6	-40 to +85	2.4	10	5.0	-	20 k
PC410L0NIP0F		High speed (10 Mb/s), High CMR (10 kV/µs), For flow soldering	0	0		20	3.75	0.6	-40 to +85	13	5	5.0	_	350
PC410S0NIP0F	-	High speed (10 Mb/s), high CMR (10 kV/µs), for flow soldering, Solder heat resistance: 270°C	0	0	SOP 8-pin	20	3.75	0.6	-40 to +85	13	5	5.0	1	350
PC4D10SNIP0F		High speed (10 Mb/s), for flow soldering, Solder heat resistance: 270°C 2ch output	0	_	SOP 8-pin	20	3.75	0.6	-40 to +85	13	5	5.0	_	350

A: Rated voltage circuit

- *1 Each item is measured at Vcc=5V. (PC400)

*2 Please refer to Specification Sheets for model numbers approved by safety standards.
*3 Optionally available.

The model marked with ▲ may not be available in the near future. Contact with SHARP for details before use.

<Compact, SMT type> (1-2)

C: Approved

(Ta = 25°C)

				ved by fety			maximum ngs			Electr	o-optic	al chara	cteristic	s	
Model No.	Internal connection diagram	Features	stand	vDE*2	Package	Forward current IF (mA)	Isolation voltage (AC) Viso (rms) (kV)	CTR	IF (mA)	Vo (V)	Vcc (V)	Prop tPHL (µs) TYP.	tPLH (µs) TYP.	RL (Ω)	IF (mA)
PC457L0NIP0F		High speed (1 Mb/s), high CMR (15 kV/µs), for flow soldering	0	0	Mini-flat 5-pin	25	3.75	19	16	0.4	4.5	0.2	0.4	1 900	16
PC457S0NIP0F	H DH	High speed (1 Mb/s), high CMR (15 kV/µs), for flow soldering, Solder heat resistance: 270°C	0	0	SOP 8-pin	25	3.75	19	16	0.4	4.5	0.2	0.3	1 900	16

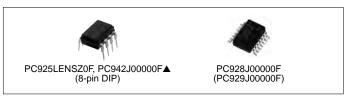
- *1 Please refer to Specification Sheets for model numbers approved by safety standards.
 *2 Optionally available.

♦ OPIC Output ("OPIC" (Optical IC) is a trademark of SHARP Corporation. An OPIC consists of a light-detecting element and signal-processing circuit integrated onto a single chip.

<pre><dip digit<="" pre="" type,=""></dip></pre>	tal output>	•			: Approve	ed		(Ta = 25°C)							
			Appro saf				olute n ratings		Electro-	optical	charact	eristics	*1		
Model No.	Internal connection	Features	stand		Package	Forward	Isolation voltage	Lo	w level outp	ut volta	ge		shold in	iput	
	diagram		UL VDE	VDE *4		IE.	Viso (rms) (kV)	Vol (V) MAX.	Ta (°C)	IOL (mA)	IF (mA)	IFHL (mA) MAX.	IFLH (mA) MAX.	RL (Ω)	
PC900V0NSZXF*2, *3	A	Digital output, normal-off operation	0	0	6-pin DIP	50	5.0	0.4	0 to +70	16	4	2.0	_	280	

- A: Rated voltage circuit
 *1 Each item is measured at Vcc=5V.
- Lead forming type is also available for surface mounting.
- Taped package of lead forming type for surface mounting is also available.
- Optionally available.
- *5 Please refer to Specification Sheets for model numbers approved by safety standards.

♦ OPIC Output ("OPIC" (Optical IC) is a trademark of SHARP Corporation. An OPIC consists of a light-detecting element and signal-processing circuit integrated onto a single chip.


DIP type Gate drive types

— ○· Annroved

 type, type, type 	type, Gate drive type>				: Approvea							(Ta =	= 25°C)
			sat	ved by fety			olute m ratings					teristics	
	Internal		stand	ards*3		Forward	Isolation		Pro	pagation	n delay t	time	
Model No.	connection diagram	Features	UL	VDE *2	Package	current IF (mA)	voltage (AC) Viso (rms) (kV)	tPHL (µs) TYP.	tplh (µs) TYP.	Vcc (V)	IF (mA)	RL1 (Ω)	RL2 (Ω)
PC925LxNSZ0F*1		Built-in drive circuit directly connectable to MOS-FET and IGBT Peak output current: 2.5 A Low dissipation current (Icc = TYP. 2.5 mA) High resistance to noise (CMR: MIN. 15 kV/µs)	0	0	8-pin DIP	25	5.0	MAX. 0.5	MAX. 0.5	15 to 30	7 to 16	Rg = 10	ı
PC942J00000F▲	Interface Amplifier	For controlling inverter- controlled air-conditioner	0	0		25	5.0	2.0	2.0	6	5	5	10
PC928J00000F	Interface Amplifier	For driving inverter IGBT, built-in short protection circuit	0	0	14-pin SMT (Half pitch	25	4.0	1.0	1.0	24	10	Rg = 47	-
PC929J00000F	Interface Amplifier	For driving inverter IGBT, high speed, built-in short protection circuit	0	0	lead)	20	4.0	0.3	0.3	24	5	Rg = 47	-

^{*1} Lead forming type is also available for surface mounting. Taped package of lead forming type for surface mounting is also available.
*2 A VDE approved type is optionally available.
*3 Please refer to Specification Sheets for model numbers approved by safety standards.

The model marked with ▲ may not be available in the near future. Contact with SHARP for details before use.

PHOTOTRIAC COUPLER LINEUP

■ Phototriac Coupler Lineup

Package	Applied voltage	ON-state current (rms)		Features	Model No.	Page
Mini-flat (SMD)	AC 200 V lines (VDRM = 600V)	0.05 A	General purpose		S2S3000F*3 / S2S5A00F*3 / S2S5FA0F*3	48
· Q				Built-in zero-cross circuit	S2S4000F*3	49
DIP type	AC 200 V lines (VDRM = 600V)	0.1 A	General purpose		PC3ST11NSZAX* ³	48
(4-pin)				Built-in zero-cross circuit	PC3ST21NSZBX*2	49
			Reinforced isolati	on	PC3SH11YFZAX*3 / PC3SH13YFZAX*3	48
, , ,				Built-in zero-cross circuit	PC3SH21YFZBX*2	49
DIP type	AC 100 V lines (VDRM = 400V)	0.1 A	General purpose		PC2SD11NTZAF*3 / PC1S3021NTZF*4	48
(6-pin package, 5th-pin cut)	AC 200 V lines (VDRM = 600V)	0.1 A	General purpose		PC3SD12NTZAF*3 / PC3SD12NTZBF*2 / PC3SD12NTZCF*1 / PC1S3052YTZF*3 / PC3SD11NTZCF*1 / PC3SD13NTZBF*2	48
				Built-in zero-cross circuit	PC3SD21NTZAF*3 / PC3SD21NTZBF*2 / PC3SD21NTZCF*1 / PC3SD21NTZDF*5 / PC3SD23YTZCF*1 / PC1S3063YTZF*1	49
			Reinforced isolation	on	PC3SF11YVZAF*3 / PC3SF11YVZBF*2 / PC3SF13YVZBF*2	48
				Built-in zero-cross circuit	PC3SF21YVZAF*3 / PC3SF21YVZBF*2 / PC3SF23YVZSF*2	49
	AC 200 V lines (VDRM = 800V)	0.1 A	General purpose		PC4SD11NTZBF*2 / PC4SD11NTZCF*1	48
				Built-in zero-cross circuit	PC4SD21NTZCF*1 / PC4SD21NTZDF*5	49
			Reinforced isolati	on	PC4SF11YVZAF*3 / PC4SF11YVZBF*2	48
				Built-in zero-cross circuit	PC4SF21YVZBF*2 / PC4SF21YVZCF*1 / PC4SF21YWPSF*2	49

 $\text{Minimum trigger current: *1 IFT} \leqq 5 \text{ mA, *2 IFT} \leqq 7 \text{ mA, *3 IFT} \leqq 10 \text{ mA, *4 IFT} \leqq 15 \text{ mA, *5 IFT} \leqq 3 \text{ mA}$

PHOTOTRIAC COUPLERS

■ Phototriac Couplers

■ Phototriac	Couplers				-○: Ap	proved				(Ta = 25°C)
				oproved y standa			Absolut	te maximun	n ratings	Electro-optical characteristics
Model No.	Internal connection diagram	Features	UL, CSA	VDE	Others	Package	ON-state current IT (rms) (A)	Repetitive peak OFF-state voltage VDRM (V)	Isolation voltage (AC) Viso (rms) (kV)	Min. trigger current IFT (mA) MAX. VD = 6 V, RL = 100Ω
S2S3000F		200 V lines, compact	0	○*6	-					10
S2S5A00F		200 V lines, compact	0	O*6	_	Mini-flat 4-pin	0.05		3.75	10
S2S5FA0F		High impulse noise product	0	O*6	-					10
PC3ST11NSZAX		200 V lines, compact	0	○*6	_			600		10
PC3SH11YFZAX		200 V lines, compact, reinforced isolation	0	0	O*2	4-pin DIP	0.1		5.0	10
PC3SH13YFZAX		200 V lines, compact, reinforced isolation, high noise resistance	0	0	O*2	DIF				10
PC2SD11NTZAF		100 V lines	0	_	_			400		10
PC1S3021NTZF		100 V lines	0	_	O*2			400		10
PC3SD12NTZAF		200 V lines	0	○*6	-					10
PC1S3052YTZF		200 V lines	0	○*6	O*2					10
PC3SD12NTZBF		200 V lines	0	O*6	_			600		7
PC3SD13NTZBF		High impulse noise product	0	○*6	-					7
PC3SD12NTZCF		200 V lines	0	○*6	_					5
PC4SD11NTZBF		200 V lines, repetitive peak-OFF-state voltage	0	O*6	-	6-pin DIP* ^{1, 3}	0.1	800	5.0	7
PC3SD11NTZCF		200 V lines	0	O*6	-			600		5
PC4SD11NTZCF		200 V lines, repetitive peak-OFF-state voltage	0	O*6	-			800		5
PC3SF11YVZAF		200 V lines, reinforced isolation	0	0	O*2					10
PC3SF11YVZBF		200 V lines, reinforced isolation	0	0	O*2			600		7
PC3SF13YVZBF		200 V lines, reinforced isolation, high noise resistance	0	0	O*2					7
PC4SF11YVZAF		200 V lines, reinforced isolation, repetitive peak-OFF-state voltage	0	0	O*2			000	1	10
PC4SF11YVZBF		200 V lines, reinforced isolation, repetitive peak-OFF-state voltage	0	0	O*2			800		7

For the notes *1 to *6, see next page.

Notice
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc.

Except where specially indicated, models listed on this page comply with the RoHS Directive*. For details, please contact SHARP.
*RoHS Directive: Prohibits use of lead, cadmium, hexavalent chromium, mercury and specific brominated flame retardants
(PBBs and PBDEs), with certain exceptions.

Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

■ Phototriac Couplers

(Built-in zero	-cross circu	ıit type)			- O: Ap	proved				(Ta = 25°C)
				oproved y standa			Absolu	te maximum	ratings	Electro-optical characteristics
Model No.	Internal connection dia- gram	Features	UL, CSA	VDE	Others	Package	ON-state current IT (rms) (A)	Repetitive peak OFF-state VDRM (V)	Isolation voltage (AC) Viso (rms) (kV)	Min. trigger current IFT (mA) MAX. VD = 4 V, RL = 100Ω
S2S4000F	Zero-cross circuit	200 V lines, compact	0	○*6	_	Mini-flat 4-pin	0.05	600	3.75	10* ⁵
PC3ST21NSZBX		200 V lines, compact	0	○*6	_	4-pin	0.4	000	5.0	7
PC3SH21YFZBX		200 V lines, compact, reinforced isolation	0	0	O*2	DÏP	0.1	600	5.0	7
PC3SD21NTZAF		200 V lines, low zero-cross voltage: MAX. 20 V	0	O*6	_					10
PC3SD21NTZBF		200 V lines, low zero-cross voltage: MAX. 20 V	0	○*6	_					7
PC3SD21NTZCF		200 V lines, low zero-cross voltage: MAX. 20 V	0	O*6	_					5
PC1S3063YTZF		100 V lines, low zero-cross voltage: MAX. 20 V	0	○*6	O*2			600		5
PC3SD23YTZCF		200 V lines, high pulse/noise resistance (TYP. 2 kV)	0	0	_					5
PC3SD21NTZDF	Zero-cross circuit	200 V lines, low zero-cross voltage: MAX. 20 V	0	○*6	_					3
PC4SD21NTZCF	Zero-cross circuit	200 V lines, repetitive peak-OFF-state voltage	0	○*6	_	6-pin DIP* ^{1, 3}	0.1	800	5.0	5
PC4SD21NTZDF		200 V lines, repetitive peak-OFF-state voltage	0	O*6	_			800		3
PC3SF21YVZAF		200 V lines, reinforced isolation	0	0	O*2					10
PC3SF21YVZBF		200 V lines, reinforced isolation	0	0	O*2			600		7
PC3SF23YVZSF		High impulse noise product	0	0	O*2					7
PC4SF21YVZBF		200 V lines, reinforced isolation, repetitive peak-OFF-state voltage	0	0	O*2					7
PC4SF21YVZCF		200 V lines, reinforced isolation, repetitive peak-OFF-state voltage	0	0	O*2)*2		800		5
PC4SF21YWPSF		High impulse noise product	0	0	O*2	6-pin DIP* ³				7

- *1 Lead forming type for *2 In conformance with *3 These are molded p *4 Please refer to Spec *5 VD = 6 V, RL = 100Ω*6 Optionally available

- Lead forming type for surface mounting is also available. In conformance with BSI, SEMKO, DEMKO, and FIMKO These are molded pin No. 5. Please refer to Specification Sheets for model numbers approved by safety standards. $V_D = 6 \ V, \ RL = 100 \Omega$

PC2SD series (PC3SD series, PC4SD series) (6-pin DIP)

PC3SF series (PC4SF series) (6-pin DIP)

PC3ST series (4-pin DIP)

PC3SH series (4-pin DIP)

SOLID STATE RELAY LINEUP

■ Solid State Relay Lineup

Package	Applied voltage	ON-state current (rms)	Features	Model No.	Page
DIP 6-pin	AC 100 V lines	0.15 A	General purpose	PR22MA11NTZF	51
	AC 200 V lines	0.06 A	General purpose	PR31MA11NTZF	51
41		0.15 A	General purpose	PR32MA11NTZF	51
		0.3 A	General purpose	PR33MA series	51
DIP 8-pin	AC 100 V lines	0.3/0.6/0.9 A	General purpose	PR23MF11NSZF / PR26MF series / PR29MF series	51
		0.6/0.9 A	Built-in zero-cross circuit	PR26MF21NSZF / PR29MF21NSZF	51
	AC 200 V lines	0.3/0.6/0.9/1.2 A	General purpose	PR33MF5 series / PR39MF5 series / PR36MF5 series / PR3BMF5 series	51
		0.6/0.9/1.2 A	Built-in zero-cross circuit	PR36MF2 series / PR39MF2 series / PR3BMF21NSZF	51
SIP 4-pin	AC 100 V lines	2/8 A 3 to 16 A	General purpose	\$102T01F*1 / \$108T01F*1 / \$101\$05F / \$102\$01F / \$112\$01F / \$116\$01F	52
		2/8 A 3 to 16 A	Built-in zero-cross circuit	\$102T02F*1 / \$108T02F*1 / \$101\$06F / \$102\$02F / \$116\$02F	52
Low profile		8 A	Built-in snubber circuit	S102S11F	52
2011 promo		3/8 A	Built-in snubber circuit/ zero-cross circuit	S101S16F / S102S12F	52
	AC 200 V lines		General purpose	\$202T01F*1 / \$208T01F*1 / \$202\$01F / \$212\$01F / \$216\$01F	52
94		2/8 A 3 to 16 A	Built-in zero-cross circuit	\$202T02F*1 / \$208T02F*1 / \$201\$06F / \$202\$02F / \$216\$02F	52/53
		8/8 A	Built-in snubber circuit	S202S15F / S202S11F	53
		8 A	Built-in snubber circuit/ zero-cross circuit	S202S12F	53

^{*1} Low profile

SOLID STATE RELAYS

☆New product

■ Solid State Relays

<DIP type> — ○: Approved $(Ta = 25^{\circ}C)$ Approved by Electrical Absolute maximum ratings safety standards*1 characteristics Min. trigger Internal Repetitive Isolation ON-state current Model No. connection Features Package peak OFF-state voltage current diagram VDE*2 UI CSA (AC) (mA) MAX. IT (rms) voltage Viso (rms) (A) VD = 6 VVDRM (V) (kV) $RL = 100\Omega$ 100 V lines, PR22MA11NTZF 0 \bigcirc 0 0.15 400 10 150 mA model in a small package PR31MA11NTZF 200 V lines, compact \bigcirc \bigcirc 0 0.06 10 -13 6-pin 5.0 200 V lines, DIP PR32MA11NTZF \bigcirc \bigcirc 0 0.15 600 10 150 mA model in a small package 200 V lines, 0 0 0.3 ☆PR33MA series 0 15 300 mA model in a small package PR23MF11NSZF 100 V lines, compact 0 \bigcirc _ 0.3 10 PR26MF11NSZF 100 V lines, compact \bigcirc \bigcirc 10 0.6 100 V lines, compact, 0 PR26MF12NSZF 0 400 5 low input current PR29MF11NSZF 100 V lines, compact 0 \bigcirc 10 0.9 100 V lines, compact, 0 PR29MF12NSZF \bigcirc 5 low input current PR33MF51NSLF 0 200 V lines, compact 0 0 10 0.3 PR33MF52NSLF \bigcirc 0 0 200 V lines, compact 10 PR36MF51NSLF 200 V lines, compact 0 0 0 10 0.6 200 V lines, compact, PR36MF12NSZF 0 \bigcirc 0 5 low input current 600 PR39MF51NSLF 200 V lines, compact \bigcirc \bigcirc \bigcirc 10 8-pin 0.9 4.0 DIP 200 V lines, compact, 0 0 PR39MF12NSZF \bigcirc 5 low input current PR3BMF51NSLF 0 0 200 V lines, compact \circ 10 1.2 200 V lines, compact, PR3BMF52NSZF 0 \bigcirc 0 5 low input current 100 V lines, compact PR26MF21NSZF 0 0 0.6 10 (built-in zero-cross circuit) 400 100 V lines, compact 0 PR29MF21NSZF \bigcirc 0.9 10 (built-in zero-cross circuit) 200 V lines, compact (built-in zero-PR36MF21NSZF \bigcirc \bigcirc \bigcirc 10 cross circuit) 0.6 200 V lines, compact (built-in zero-PR36MF22NSZF 0 \bigcirc 0 5 cross circuit), low input current 200 V lines, compact (built-in zero-PR39MF21NSZF 0 0 0 600 10 cross circuit) 0.9 200 V lines, compact (built-in zero-PR39MF22NSZF 0 \bigcirc 0 5 cross circuit), low input current 200 V lines, compact (built-in zero-PR3BMF21NSZF 0 0 1.2 10 cross circuit)

Please refer to Specification Sheets for model numbers approved by safety standards.

^{*2} Optionally available.

SOLID STATE RELAYS

<SIP type> (1) C: Approved (Ta = 25°C)

(1)			O. F	pproved					(1a =	: 25°C)
					Absolut	e maximum	ratings			
Internal connection diagram	Features	UL	CSA	Package	ON-state current IT (rms) (A)	Repetitive peak OFF-state voltage VDRM(V)	Isolation voltage (AC) Viso (rms) (kV)	Min. ti IFT (mA) MAX.	VD (V)	RL (Ω)
	100 V lines, low profile	0	0		2			8	12	30
	100 V lines, low profile	_	_	Low profile	8*2			8	12	30
	100 V lines, low profile (built-in zero-cross circuit)	0	0	4-pin SIP	2		3.0	8	12	30
Zero- cross circuit	100 V lines, low profile (built-in zero-cross circuit)	_	_		8*2			8	12	30
	100 V lines	0	0		3*3			15	12	30
	100 V lines	0	0		8*2			8	12	30
	100 V lines	0	0		12*4		4.0	8	12	30
	100 V lines	0	0		16* ⁵	400		8	12	30
	100 V lines (built-in zero-cross circuit)	0	0		3*3		3.0	15	6	30
Zero-	100 V lines (built-in zero-cross circuit)	0	0	4-pin SIP	8*2	_		8	6	30
circuit	100 V lines (built-in zero-cross circuit)	0	0		16* ⁵		4.0	8	6	30
	100 V lines (built-in snubber circuit)	0	0		8*1			8	12	30
	100 V lines (built-in snubber circuit, built-in zero-cross circuit)	0	0		3*3		3.0	15	6	30
Zero- cross circuit	100 V lines (built-in snubber circuit, built-in zero-cross circuit)	0	0		8*1		4.0	8	6	30
	200 V lines, low profile	0	0		2			8	12	30
	200 V lines, low profile	_	_	Low profile	8*2		2.2	8	12	30
	200 V lines, low profile (built-in zero-cross circuit)	0	0	4-pin SIP	2		3.0	8	12	30
Zero- cross circuit	200 V lines, low profile (built-in zero-cross circuit)	_	_		8*2	600		8	12	30
	200 V lines	0	0		8*2			8	12	30
	200 V lines	_	_	4-pin SIP	12*4		4.0	8	12	30
	200 V lines	_	_		16* ⁵			8	12	30
	Internal connection diagram Zero-cross circuit Zero-cross circuit Zero-cross circuit	Internal connection diagram 100 V lines, low profile 100 V lines, low profile 100 V lines, low profile (built-in zero-cross circuit) 100 V lines, low profile (built-in zero-cross circuit) 100 V lines (built-in zero-cross circuit) 100 V lines (built-in zero-cross circuit) 100 V lines (built-in zero-cross circuit) 100 V lines (built-in snubber circuit, built-in zero-cross circuit) 100 V lines (built-in snubber circuit, built-in zero-cross circuit) 200 V lines, low profile 200 V lines, low profile (built-in zero-cross circuit) 200 V lines 200 V lines	Internal connection diagram 100 V lines, low profile 100 V lines, low profile 100 V lines, low profile (built-in zero-cross circuit) 100 V lines (built-in zero-cross circuit) 100 V lines (built-in zero-cross circuit) 100 V lines (built-in snubber circuit, built-in zero-cross circuit) 100 V lines (built-in snubber circuit, built-in zero-cross circuit) 100 V lines (built-in snubber circuit, built-in zero-cross circuit) 200 V lines, low profile 200 V lines, low profile (built-in zero-cross circuit) 200 V lines (built-in zero-cross circuit) 200 V lines, low profile (built-in zero-cross circuit) 200 V lines (built-in zero-cross circuit)	Internal connection diagram 100 V lines, low profile (built-in zero-cross circuit) 100 V lines (built-in zero-cross circuit) 100 V lines (built-in zero-cross circuit) 100 V lines (built-in snubber circuit, built-in zero-cross circuit) 100 V lines (built-in snubber circuit, built-in zero-cross circuit) 200 V lines, low profile 200 V lines, low profile (built-in zero-cross circuit) 200 V lines, low profile	Internal connection diagram Too V lines, low profile	Approved by safety standards Approved by safety standards	Internal connection diagram Features UL CSA Absolute maximum Repetitive Current In (rims) (A) TON-state Department In (rims) (A) TON-state Current In (rims) Ton-stat	Internal connection Graph Features Safety standards's UL CSA Package ON-state Current Ir (rms) Safety standards's ON-state Ir (rms) Safety standards's ON-state Ir (rms) Safety standards's ON-state Ir (rms) Safety standards's Safe	Approved by safety standards 6 Chair and safety standards 7 Chair and safety standards	Internal connection diagram

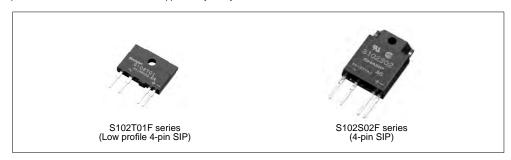
For the notes *1 to *6, see next page.

Notice
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc.

Except where specially indicated, models listed on this page comply with the RoHS Directive*. For details, please contact SHARP.
*RoHS Directive: Prohibits use of lead, cadmium, hexavalent chromium, mercury and specific brominated flame retardants
(PBBs and PBDEs), with certain exceptions.

Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

<SIP type> (2) C: Approved (Ta = 25°C)


				ved by andards*6		Absolut	e maximum	ratings		al stics	
Model No.	Internal connection diagram	Features		CSA	Package	ON-state current IT (rms) (A)	Repetitive peak OFF-state voltage VDRM(V)	Isolation voltage (AC) Viso (rms) (kV)	IFT (T. A)	VD (V)	RL (Ω)
S201S06F		200 V lines (built-in zero-cross circuit)	0	0		3* ³		3.0	15	6	30
S202S02F	Zero-	200 V lines (built-in zero-cross circuit)	0	0		8*2		4.0	8	6	30
S216S02F	circuit	200 V lines (built-in zero-cross circuit)	_	-		16* ⁵		4.0	8	6	30
S202S15F		200 V lines (built-in snubber circuit)	_	-	4-pin SIP	8*2	600	3.0	15	12	30
S202S11F	-wile	200 V lines (built-in snubber circuit)	0	0		8*1			8	12	30
S202S12F	Zero- cross circuit	200 V lines (built-in snubber circuit, built-in zero-cross circuit)	0	0		8*1		4.0	8	6	30

^{*1} Tc ≦ 88°C

*4 Tc ≦ 70°C

*5 Tc ≦ 60°C

^{*6} Please refer to Specification Sheets for model numbers approved by safety standards.

^{*2} Tc ≦ 80°C

^{*3} Tc ≦ 100°C

PHOTOINTERRUPTER LINEUP

■ Photointerrupter Lineup

<Transmissive type>

Output type	Package type	Outline	Mounting method	Model No. (series)	Page
Single phototransistor	Compact	High resolution	PWB mounting type	GP1S396HCP0F / GP1S09xHCZ0F / GP1S19xHCZ0F	55
High response speed			Surface-mount type/ Soldering reflow	GP1S396HCPSF / GP1S296HCPSF / GP1S092HCPIF / GP1S19xHCxSF	55
	Case type	High resolution	PWB mounting type, etc.	GP1S5x series	56
		Horizontal slit, High resolution	PWB mounting type	GP1S59J0000F	56
	With connector	General purpose	Snap-in	GP1S173LCS2F / GP1S273LCS1F	56
Darlington phototransistor	Case type	General purpose	PWB mounting type, etc.	GP1L5x series	57
High sensitivity		Wide gap	PWB mounting type	GP1L57J0000F	57
Digital output	Compact	High voltage	PWB mounting type	GP1A98HCZ0F	57
(OPIC output)			Surface-mount type	GP1A98HCPSF	57
	Case type	High resolution	With screw hole/ PWB mounting type	GP1A5x series	58
		Wide gap	PWB mounting type	GP1A57HRJ00F	58
	With connector	General purpose	Screw mounting type/Snap-in	GP1A173LCS3F / GP1A173LCS2F / GP1A173LCSVF / GP1A273LCS1F	59

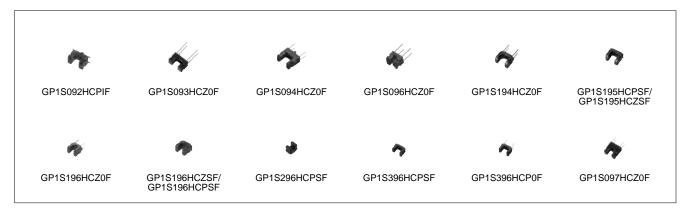
<Reflective type>

Output type	Package type	Outline	Mounting method	Model No. (series)	Page
Single phototransistor	Leadless	Long focal distance	Surface-mount type	GP2S700HCP	59
High response speed	Compact, thin (leadless)	General purpose	Surface-mount type	GP2S60	59
OPIC output	With connector	Light modulation type, Sensitivity adjusted	Screw mounting type/ Compact snap-in/ Inverter light countermeasures	GP2A25 series / GP2A28 series / GP2A200LCS0F / GP2A230LRS0F / GP2A231LRSAF / GP2A230LRSAF / GP2A240LCS0F / GP2A250LCS0F	60

<Application-specific photointerrupter lineup>

4 (pp.iou.io.	an openie proteinterrupter interpr									
Detection type	Outline (C	Output type etc.)	Mounting method	Model No. (series)	Page					
Transmissive type	Case type With encoder function Digital 2 output (phase A/B)	Resolution: 45 LPI Linear scale slit pitch: 0.56 mm	PWB mounting type	GP1A057SGKLF	61					
		Resolution: 150 LPI Linear scale slit pitch: 0.17 mm	PWB mounting type	GP1A057RBKLF	61					
		Resolution: 180 LPI Linear scale slit pitch: 0.14 mm	With screw hole/ PWB mounting type	GP1A058SCK0F	61					
		Resolution: 300 LPI Linear scale slit pitch: 0.0847 mm	With screw hole/ PWB mounting type	GP1A054RDKLF	61					
	Case type With encoder function Digital 2 output (Multiplying output)	Resolution for reading: 180 LPI Pitch: 0.14 mm Output resolution: 360 LPI	With screw hole/ PWB mounting type	GP1A101C2KSF	61					
	For amusement use		Screw mounting	GP1A204HCS0	61					
Reflective type	Injection For prism system (Singl	e phototransistor)	Screw mounting	GP2S29SVJ00F	61					
	For amusement use (Pa	achinko ball sensor)	_	GP2A222HCKA	62					

■ Photointerrupters

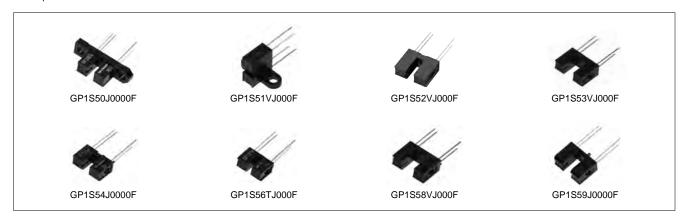

- <Transmissive type>
- **♦**Single Phototransistor Output

<Compact type>

(Ta = 25°C)

			Detecting			Elect	tro-optic	al char	acterist	ics	
	Internal	_	and	Slit width	Currer	nt transfe	er ratio	Response			
Model No.	connection Features diagram		emitting gap (mm)	(mm)	CTR (%) MIN.	IF (mA)	VCE (V)	tr (µs) TYP.	Ic (mA)	Rι (kΩ)	VCE (V)
GP1S092HCPIF		Wide gap, for soldering reflow, surface mount compatible, with positioning boss $(4.5 \times 2.6 \times 2.9 \text{ [height] mm)}$	2.0	0.3	2.0	5	5	50	0.1	1	5
GP1S093HCZ0F		Wide gap (4.5 × 2.6 × 2.9 [height] mm)	2.0	0.3	2.0	5	5	50	0.1	1	5
GP1S094HCZ0F		Wide gap, with positioning pin, (5.5 × 2.6 × 4.8 [height] mm)	3.0	0.3	0.8	5	5	50	0.1	1	5
GP1S096HCZ0F		Narrow gap (3.5 × 2.6 × 2.9 [height] mm)	1.0	0.3	2.0	5	5	50	0.1	1	5
GP1S194HCZ0F		Compact, wide gap, size: 3.6 × 2.0 × 2.7 (height) mm	1.7	0.3	3.0	5	5	50	0.1	1	5
GP1S195HCZSF GP1S195HCPSF		Compact, wide gap, surface mount compatible, size: 3.4 × 2.0 × 2.7 (height) mm	1.5	0.3	3.0	5	5	50	0.1	1	5
GP1S196HCZ0F		Compact, low profile (3.1 × 2.0 × 2.7 [height] mm)	1.1	0.3	2.0	5	5	50	0.1	1	5
GP1S196HCZSF GP1S196HCPSF		Surface mount, for soldering reflow, compact, low profile (3.1 × 2.0 × 2.7 [height] mm)	1.1	0.3	2.0	5	5	50	0.1	1	5
GP1S296HCPSF		Surface mount, for soldering reflow, compact, low profile (2.5 × 1.8 × 1.9 [height] mm)	1.0	0.2	3.0	5	5	50	0.1	1	5
GP1S396HCP0F		Straight lead type, compact, low profile (2.26 × 1.4 × 1.6 [height] mm)	1.2	0.12	2.0	5	5	30	0.1	1	5
GP1S396HCPSF		Surface mount, for soldering reflow, compact, low profile (2.26 × 1.4 × 1.6 [height] mm)	1.2	0.12	2.0	5	5	30	0.1	1	5
GP1S097HCZ0F		High resolution, wide gap, with mounting hole (4.5 × 2.6 × 4.5 [height] mm)	2.0	0.3	2.0	5	5	50	0.1	1	5

^{*} Topr: -25 to +85°C ** GP1SxxxHCZxF: Sleeve package, GP1SxxxHCPxF: Taped package



<Case type>

 $(Ta = 25^{\circ}C)$

			Detecting		Electro-optical characteristics								
	Internal		and emitting	Slit width	Currer	t transfe	er ratio	R	espon	se time			
Model No.	connection diagram	Features e		(mm)	CTR (%) MIN.	IF (mA)	VCE (V)	tr (µs) TYP.	Ic (mA)	RL (Ω)	VCE (V)		
GP1S50J0000F		High resolution, both-side mounting type	3.0	0.5	2.5	20	5	3	2	100	2		
GP1S51VJ000F		High resolution, side mounting type	3.0	0.5	2.5	20	5	3	2	100	2		
GP1S52VJ000F		High resolution, PWB mounting type	3.0	0.5	2.5	20	5	3	2	100	2		
GP1S53VJ000F		High resolution, PWB mounting type	5.0	0.5	2.5	20	5	3	2	100	2		
GP1S54J0000F		High resolution, with positioning pin, PWB mounting type	3.0	0.5	2.5	20	5	3	2	100	2		
GP1S56TJ000F		High resolution, with positioning pin, PWB mounting type	2.0	0.15	2.0	20	5	38	0.5	1 000	2		
GP1S58VJ000F		High resolution, with positioning pin, PWB mounting type	5.0	0.5	2.5	20	5	3	2	100	2		
GP1S59J0000F		High resolution, horizontal slit, with positioning pin, PWB mounting type	4.2	0.5	2.5	20	5	3	2	100	2		

 [★] Topr: -25 to +85°C

<With connector>

(Ta = 25°C)

			Detecting		Electro-optical characteristics								
	Internal		and	Slit width	Currer	nt transf	er ratio	Response time					
Model No.	connection diagram	Features	emitting gap (mm)	(mm)	CTR (%) MIN.	IF (mA)	VCE (V)	tr (µs) TYP.	Ic (mA)	RL (Ω)	VCE (V)		
GP1S173LCS2F		Snap-in mounting integrated connector type Applicable to 3 kinds of thickness of mounting boards	5.0	0.5	2.5	20	5	3	2	100	2		
GP1S273LCS1F		Snap-in mounting integrated connector type Applicable to 3 kinds of thickness of mounting boards Compact (Compatible with 1.5 mm pitch connector)	5.0	0.7	2.5	20	5	3	2	100	2		

^{*} Topr: -25 to +85°C, -30 to +95°C (GP1S173LCS2F, GP1S273LCS1F)

◆Darlington Phototransistor Output

<Case type> $(Ta = 25^{\circ}C)$

			Detecting		Electro-optical characteristics								
	Internal	_	and	Slit width	Currer	nt transf	er ratio	Response time					
Model No.	connection diagram	Features	emitting gap (mm)	(mm)	CTR (%) MIN.	IF (mA)	VCE (V)	tr (µs) TYP.	Ic (mA)	RL (Ω)	VCE (V)		
GP1L50J0000F		High sensitivity, both-side mounting type	3.0	0.5	50	1	2	80	2	100	2		
GP1L51J0000F		High sensitivity, side mounting type	3.0	0.5	50	1	2	80	2	100	2		
GP1L52VJ000F		High sensitivity, PWB mounting type	3.0	0.5	50	1	2	80	2	100	2		
GP1L53VJ000F		High sensitivity, PWB mounting type	5.0	0.5	30	1	2	80	2	100	2		
GP1L57J0000F		High sensitivity, wide gap, PWB mounting type	10.0	1.8	70	1	2	130	2	100	2		

 [★] Topr: -25 to +85°C

♦ OPIC Type ("OPIC" (Optical IC) is a trademark of SHARP Corporation. An OPIC consists of a light-detecting element and signal-processing circuit integrated onto a single chip.)

<Compact type>

(Ta = 25°C)

			Detecting		Electro-optical characteristics									
	Internal		and	nd Slit width	Threshold input current			Propagation delay time						
Model No.	connection diagram	Features	emitting gap (mm)	(mm)	IFLH (mA) MAX.	IFHL (mA) MAX.	Vcc (V)	RL (kΩ)	tplh (µs) TYP.	tPHL (µs) TYP.	IF (mA)	RL (kΩ)	Vcc (V)	
GP1A98HCZ0F	Voltage regulator Amplifier	Compact, PWB mounting	3.2	0.5	8	_	3.3 to 24	3.9 to 20	2.0	10.0	10	3.9 to 20	3.3 to 24	
GP1A98HCPSF		Compact, surface mount	3.2	0.5	8	_	3.3 to 24	3.9 to 20	2.0	10.0	10	3.9 to 20	3.3 to 24	

 [★] Topr = -25 to +85°C

<Case type>

(Ta = 25°C)

			Detecting		Electro-optical characteristics								
	Internal	_		Thresho	old input o	urrent	F	ropagation	on delay	time			
Model No.	connection diagram	Features	emitting gap (mm)	(mm)	IFLH (mA) MAX.	IFHL (mA) MAX.	Vcc (V)	tpLH (µs) TYP.	tPHL (µs) TYP.	IF (mA)	RL (Ω)	Vcc (V)	
GP1A50HRJ00F		Both-side mounting, with screw hole	3.0	0.5	5	-	5	3	5	5	280	5	
GP1A51HRJ00F	-Voltage regulator	Side mounting, with screw hole	3.0	0.5	5	_	5	3	5	5	280	5	
GP1A52HRJ00F	Amplifier	PWB mounting type	3.0	0.5	5	_	5	3	5	5	280	5	
GP1A53HRJ00F	(When light is cut off: low level)	PWB mounting type	5.0	0.5	8	-	5	3	5	8	280	5	
GP1A57HRJ00F	low level)	PWB mounting type, with positioning pin	10.0	1.8	7	-	5	3	5	7	280	5	
GP1A58HRJ00F		PWB mounting type, with positioning pin	5.0	0.5	8	-	5	3	5	8	280	5	
GP1A52LRJ00F	Voltage regulator Amplifier (When light is cut off: high level)	PWB mounting type	3.0	0.5	-	5	5	5	3	5	280	5	

Topr = -25 to +85°C

GP1A51HRJ00F

GP1A52LRJ00F (GP1A52HRJ00F)

GP1A53HRJ00F GP1A58HRJ00F with positioning pin

GP1A57HRJ00F

PHOTOINTERRUPTERS (TRANSMISSIVE TYPE)/(REFLECTIVE TYPE)

☆New product

♦OPIC Type ("OPIC" (Optical IC) is a trademark of SHARP Corporation. An OPIC consists of a light-detecting element and signal-processing circuit integrated onto a single chip.

<With 3-pin connector terminal>

(Ta = 25°C)

Internal				Detecting		Electro-optical characteristics						
	Internal	Factoria		and	Slit width		voltage	Low level output voltage				
Model No.	connection diagram		Features	emitting gap (mm)	(mm)	Vcc (V) MIN. MAX.		Vol (V) MAX.	Light cut-off	IOL (mA)	Vcc (V)	
☆GP1A173LCS3F			Snap-in mounting integrated connector type*1	5.0	0.5	2.7	5.5	0.35	No	4	3.3	
GP1A173LCS2F	Voltage		Snap-in mounting integrated connector type*1	5.0	0.5	4.5	5.5	0.35	No	4	5	
GP1A173LCSVF	regulator	connector	Snap-in mounting integrated connector type*1, enforced electrostatic discharge (ESD) type	5.0	0.5	4.5	5.5	0.35	No	4	5	
GP1A273LCS1F		with 3-pin	Integrated connector, compatible with 1.5 mm pitch connector, snap-in mounting type*1	5.0	0.7	4.5	5.5	0.35	No	4	5	
GP1A75EJ000F▲	Voltage regulator Amplifier	A	Either-side mounting type Screw mounting type	5.0	0.5	4.5	5.5	0.35	Yes	16	5	

^{*} Topr: -20 to +75°C, -30 to +95°C (GPIA173LCS3F, GP1A173LCS2F, GP1A173LCSVF, GP1A273LCS1F)
*1 Applicable to 3 kinds of thickness of mounting boards.

The model marked with ▲ may not be available in the near future. Contact with SHARP for details before use.

■ Photointerrupters

- <Reflective type>
- **♦**Single Phototransistor Output

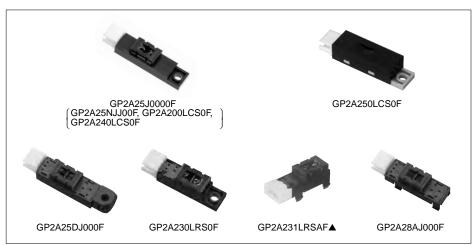
<Compact>

 $(Ta = 25^{\circ}C)$

			Optimum		Elec	ctro-optica	l charact	eristics		
Model No.	Internal connection	Features	detecting	Curre	ent transfei	ratio	Response time			
Model No.	diagram	1 Gataros		CTR (%)	lF	VCE	tr (µs)	Ic	RL	VCE
alagia			(mm)	MIN.	(mA)	(V)	TYP.	(mA)	$(k\Omega)$	(V)
GP2S700HCP	* 5	Compact ($4 \times 3 \times 2$ [height] mm), long focal distance, surface mounting leadless type	4	1.5	4	2	20	0.1	1	2
GP2S60	Thin (3.2 × 1.7 × 1.1 [height] mm), surface mour leadless type		1	1.0	4	2	20	0.1	1	2

[★] Topr: -25 to +85°C

PHOTOINTERRUPTERS (REFLECTIVE TYPE)


♦ OPIC Output ("OPIC" (Optical IC) is a trademark of SHARP Corporation. An OPIC consists of a light-detecting element and signal-processing circuit integrated onto a single chip.

<With 3-pin connector terminal>

 $(Ta = 25^{\circ}C)$

			0-4			Electro-optical characteristics				
	Internal		Optimum detecting	Supply	voltage	Dissipation	n current	Low level or	tput voltage	
Model No.	connection diagram	Features	distance (mm)	Vcc (V) MIN. MAX.		Icc (mA) MAX.	Vcc (V)	Vol (V) MAX.	Vcc (V)	
GP2A200LCS0F		Multi types of paper detectable, light modulation type, with connector, sensitivity adjusted	5 to 15	4.75	5.25	30*1	5	0.4	5	
GP2A240LCS0F	(Following	Applicable to inverter fluorescent lamp, light modulation type, with connector, sensitivity adjusted	5 to 15	4.75	5.25	30*1	5	0.4	5	
GP2A250LCS0F	diagram [A])	Static electricity resistant, applicable to inverter fluorescent lamp, light modulation type, with connector, sensitivity adjusted	2.5 to 12.5	4.75	5.25	30*1	5	0.4	5	
GP2A25J0000F		Multi types of paper detectable, light modulation type, with connector, sensitivity adjusted	3 to 7	4.75	5.25	30*1	5	0.4	5	
GP2A230LRS0F		Compact, hook type (GP2A231LRSAF),								
GP2A230LRSAF	(Following diagram [B])	multi types of paper detectable, light modulation type,	3 to 7	4.75	5.25	20*1	5	0.4	5	
GP2A231LRSAF▲	0	with connector								
GP2A25NJJ00F	<i>(</i> = " .	Multi types of paper detectable, light modulation type, sensitivity adjusted, improved light-resistance characteristic for inverter lighting, built-in visible light cut filter	3 to 7	4.75	5.25	30*1	5	0.4	5	
GP2A25DJ000F	(Following diagram [A])	Multi types of paper detectable, light modulation type, with connector, sensitivity adjusted	3 to 7	4.75	5.25	30*1	5	0.4	5	
GP2A28AJ000F		Multi types of paper detectable, light modulation type, with connector, sensitivity adjusted, hook type	3 to 7	4.75	5.25	30*1	5	0.4	5	

[Internal connection diagram] [A] Synchronous detector [B]

Topr: -10 to +60°C (GP2A25J0000F, etc.)
-10 to +70°C (GP2A200LCS0F, GP2A240LCS0F, GP2A250LCS0F, GP2A230LRS0F, GP2A230LRSAF, GP2A231LRSAF)

^{*1} Smoothing value R L = ∞

The model marked with ▲ may not be available in the near future. Contact with SHARP for details before use.

PHOTOINTERRUPTERS FOR SPECIFIC APPLICATIONS

■ Photointerrupters for Specific Applications

◆Transmissive Type

<Case type, with encoder function>

 $(Ta = 25^{\circ}C)$

	Absolute m	aximum ratings			Electro-optical characteristics			
Model No.	\/aa	Tone	Operating			Response	frequency	Dissipation
Wiodel No.	Vcc (V)	(V) (°Ċ) Vcc (Ŭ) Output signal TYP.		Resolution	f (kHz) MAX.	IF (mA)	current (output side) Icc (mA) MAX.	
GP1A057RBKLF	6	-10 to +70	3.3		Linear scale slit pitch 0.17 (mm) (150LPI)	60	20	7
GP1A054RDKLF	6	-10 to +70	3.3	Digital 2 output	Linear scale slit pitch 0.0847 (mm) (300LPI)	60	20	5.5
GP1A057SGKLF	6	-10 to +70	3.3	(Phase A/B)	Linear scale slit pitch 0.56 (mm) (45LPI)	25	20	5.5
GP1A058SCK0F	6	-10 to +70	3.3		Linear scale slit pitch 0.14 (mm) (180LPI)	60	20	5.5
GP1A101C2KSF	6.5	-10 to +70	3.3	Digital 2 output (Multiplying output)	Resolution for reading: 180 LPI (Pitch: 0.14 mm) Output resolution: 360 LPI	120	20	20

^{*} High precision read and low affection of angle error from vibration thanks to the multi-segment PD system. Duty ratio: 50±15%, phase difference: 90±45°

GP1A057RBKLF (GP1A057SGKLF)

GP1A058SCK0F

GP1A101C2KSF

<For amusement use>

 $(Ta = 0 \text{ to } +40^{\circ}C)$

			Detection		Electro-optical characteristics							
Model No.	Internal connection	Features	Detecting and emitting gap (mm)	Slit width (mm)	Operating voltage Vcc (V)		Low level output voltage					
	diagram				MIN.	MAX.	Vol (V) MAX.	Light cut-off	IoL (mA)	Vcc (V)		
GP1A204HCS0	Voltage regulator Amplifier	Connector with lock, screw mounting type, high resistant to noise	4.0	0.5	10.8	24	0.4	Yes	5	10.8 to 24		

♦Reflective Type

<Case type, phototransistor output>

(Ta = 25°C)

			Electro-optical characteristics									
Model No.	Internal connection	Features	Pea	k photocur	rent	Response time						
Model No.	diagram	reatures	ICP (mA)	IF (mA)	VCE (V)	tr (µs) TYP.	Ic (mA)	RL (kΩ)	VCE (V)			
GP2S29SVJ00F	+	Long focal distance (with prism system*1), compact, screw mounting type	0.4 to 3.0*1	20	5	38	0.5	1	2			

Topr: -25 to +85°C

^{*1} Space between prism and sensor is 8 mm.

PHOTOINTERRUPTERS FOR SPECIFIC APPLICATIONS / **PROXIMITY SENSOR**

<For amusement use>

(Ta = 25°C)

Model No.		Electro-optical characteristics						
Model No.	Features	Supply voltage Vcc (V)	Dissipation current Icc (mA)	Response frequency f (Hz)				
GP2A222HCKA	Employs reflective type, pinball detector, connector with lock In conjunction with an IC, detects beam interruption*1	4.5 to 16.5	MAX. 12	MAX. 500				

^{*1} Used together with interface IC for control (IR3N184)

■ Proximity Sensor

(Ta = 25°C)

		Absolute max	kimum ratings		Electro-optical	characteristics	3
Model No.	Features	Vcc (V)	Topr (°C)	Dissipation current Icc (μΑ) TYP.	Detecting distance Lon (mm) MIN.	Non- detecting distance Loff (mm) MAX.	Peak emission wavelength λρ (nm)
GP2AP002S00F	Compact size (4.0 × 2.0 × 1.25 t mm) Drastically reduced LED current consumption by employing a light modulation system Built-in LEDs for simple optical design and I ² C output	3.8	-25 to +85	240	25	150	940

PROXIMITY SENSOR WITH INTEGRATED **AMBIENT LIGHT SENSOR**

☆New product

■ Proximity Sensor with Integrated Ambient Light Sensor

(Ta = 25°C)

		Absolute maxi- mum ratings		Electro-optical characteristics									
					Proximity sensor portion Ambient light sensor portion								
Model No.	Features			Dissipation	Detecting	Non-	Peak	Recom-	Peak	Output	current		
Wodel No.	i eatules	Vcc (V)	Topr (°C)	current Icc (µA) TYP.	distance Lon (mm) MIN.	detecting distance Loff (mm) MAX.	omiccion	mended illuminance range Ev (lx) MIN.	sensitivity wavelength λp (nm)	lo1 (μΑ) TYP.	lo2 (µA) MAX.		
GP2AP002A00F▲	LED and ambient light sensor combined in a single package (5.6 × 2.1 × 1.25 t mm) Drastically reduced LED current consumption by employing a light modulation system Built-in LEDs for simple optical design Proximity sensor: I ² C output Ambient light sensor: logarithmic current output	3.8	-25 to +85	270	25	150	940	3 to 55 000	555	30 (at Ev = 1 000 lx)	1 (at Ev = 0 lx)		

The model marked with ▲ may not be available in the near future. Contact with SHARP for details before use.

(Ta = 25°C)

		Absolute maxi- mum ratings		Electro-optical characteristics								
					Proximity se	nsor portion	Ambien	t light sensor	portion			
Model No.	Features	Vcc (V)	Topr (°C)	Dissipation current Icc (µA) TYP.	Detecting distance Lon (mm) TYP.	Peak emission wavelength λp (nm)	Recom- mended illuminance range Ev (lx)	Output resolution (bit)	ADC conversion time Tint (ms) TYP.			
☆GP2AP030A00F	LED and ambient light sensor combined in a single package (4.0 × 2.1 × 1.25 t mm) Built-in LEDs for simple optical design Illuminance output: digital 16-bit output (Minimum detectable illuminance: 0.02 lx) I ² C output compatible (proximity sensor, ambient light sensor)	5.5	-35 to +85	65	100	940	0.02 to 10 000	16	100			

PROXIMITY/GESTURE SENSOR WITH INTEGRATED AMBIENT LIGHT SENSOR

☆New product

■ Proximity/Gesture Sensor with Integrated Ambient Light Sensor

(Ta = 25°C)

			te maxi- ratings	Electro-optical characteristics								
				Dissipa-	Dissipa-		//gesture portion	Ambient light sensor portion				
Model No.	Features	Vcc (V)	Topr (°C)	tion current Icc (µA) TYP.	tion current Icc (Gesture) (µA) TYP.	Detecting distance Lon (mm) TYP.	Peak emission wavelength λρ (nm)	Recom- mended illuminance range Ev (lx)	Output resolution (bit)	ADC conversion time Tint (ms) TYP.		
☆GP2AP052A00F	LED and ambient light sensor combined in a single package (5.6 × 2.1 × 1.25 t mm) Built-in LEDs for simple optical design Illuminance output: digital 16-bit output (Minimum detectable illuminance: 0.02 lx) I ² C output compatible Gesture recognition: directional hand movements detected without touching the screen	5.5	-35 to +85	65	200	100	940	0.02 to 10 000	16	100		

■ Ambient Light Sensors

(Ta = 25°C)

			Absolute	maximu	m ratings		Electro-	optical char	acteristics		
Model No.	Туре	Package	Vcc (V)	lo (mA)	Topr (°C)	Recommended supply voltage Vcc (V)	Recommended illuminance range Ev (lx)	Dissipation current Icc (µA) TYP.	Peak sensitivity wavelength λp (nm)	Output Io1 (µA) TYP.	lo2 (µA) TYP.
GA1A2S100SS	Built-in amplification circuit Peak sensitivity characteristic close to human visual sensitivity Output characteristic: Linear current output for illuminance Lead frame (straight) type	Transparent epoxy resin	7.0	5	-40 to +85	2.7 to 3.6	10 to 10 000	500	555	480 (at Ev = 1 000 lx)	48 (at Ev = 100 lx)
GA1A2S100LY	Built-in amplification circuit Peak sensitivity characteristic close to human visual sensitivity Output characteristic: Linear current output for illuminance Lead frame (L bend) type	(3 × 4 mm)	7.0	5	-40 to +85	2.7 to 3.6	10 to 10 000	500	555	480 (at Ev = 1 000 lx)	
GA1A1S202WP	Built-in amplification circuit Peak sensitivity characteristic close to human visual sensitivity Output characteristic: Logarithmic current output for illuminance	Compact SMD (2.0 × 1.6 × 0.6 mm) Leadless	7.0	1	-40 to +85	2.3 to 3.2	3 to 55 000	70	555	20 (at Ev = 100 lx)	30 (at Ev = 1 000 lx)
GA1A1S203WP▲	Built-in amplification circuit Peak sensitivity characteristic close to human visual sensitivity Output characteristic: Logarithmic current output for illuminance Thin type	Compact SMD (2.0 × 1.6 × 0.42 mm) Leadless	7.0	1	-40 to +85	2.3 to 3.2	3 to 55 000	70	555	20 (at Ev = 100 lx)	30 (at Ev = 1 000 lx)
GA1A1S204WP	Built-in amplification circuit Peak sensitivity characteristic close to human visual sensitivity Output characteristic: Logarithmic current output for illuminance Back-mount-available type	$\begin{array}{l} \text{Compact SMD} \\ (3.3 \times 2.0 \\ \times 0.6 \text{ mm}) \\ \text{Back-mount} \\ \text{available,} \\ \text{leadless} \end{array}$	7.0	1	-40 to +85	2.3 to 3.2	3 to 55 000	70	555		30 (at Ev = 1 000 lx)
GA1A1S100WP	Built-in amplification circuit Peak sensitivity characteristic close to human visual sensitivity Output characteristic: Linear current output for illuminance	Compact SMD (2.0 × 1.6 × 0.6 mm) Leadless	7.0	10	-40 to +85	2.7 to 3.6	10 to 5 000	1 460	555	1 420 (at Ev = 1 000 lx)	142 (at Ev = 100 lx)

The model marked with ▲ may not be available in the near future. Contact with SHARP for details before use.

GA1A2S100LY

GA1A1S202WP (GA1A1S100WP)

GA1A1S203WP▲

GA1A1S204WP

OPIC LIGHT DETECTORS

■ OPIC Light Detectors ("OPIC" (Optical IC) is a trademark of SHARP Corporation. An OPIC consists of a light-detecting element and signal-processing circuit integrated onto a single chip.)

(Ta = 25°C)

			Absol	ute max	imum r	atings			Electro	o-optical	characte	eristics		
Model No.	Type	Package	Vcc	D	lo	Topr	Evlh	EVHL		tPLH	tPHL			
	,,,,,,	. asiago	(V)	(mW)	r i io i iopi	(°C)	(Ix) MAX.	(lx) MAX.	Vcc (V)	(µs) TYP.	(µs) TYP.	Vcc (V)	Ev (lx)	RL (Ω)
IS485E	Built-in schmidt trigger	Transparent	-0.5 to +17	175	50	-25 to +85	_	35	5	5	3	5	50	280
IS486E	circuit, amplifier and voltage regulator	epoxy resin with condenser (lens)	-0.5 to +17	175	50	-25 to +85	35	-	5	3	5	5	50	280

<Low-voltage operation>

 $(Ta = 25^{\circ}C)$

	• .									,	/			
			Absol	ute max	imum ratings			Elect	ro-optica	l charac	teristics			
Model No.	Type	Package	В	Io	Topr	Operating	Evlh	EVHL		tPHL	tPLH			
model 110.	1,700	Package P 10 (mW) (mA)	(°C)	supply voltage (V)	(lx) MAX.	(Ix) MAX.	Vcc (V)	(µs) TYP.	(µs) TYP.	Vcc (V)	E∨ (Ix)	R _L (Ω)		
						10110.90 (1)	IVI/A/A.	IVI/A/A.	(v)	111.	1111.	(v)	(1/)	(22)
IS489E	Built-in Schmidt trigger circuit and amplifier	Transparent epoxy resin with condenser (lens)	80	2	-25 to +85	1.4 to 7.0	_	15	3	1.3	8.5	3	125	3 000

<Model employing a light modulation system>

(Ta = 25°C)

			Absol	ute max	cimum r	atings		Electro-	optical ch	aracterist	ics*2		External
Model No.	Туре	Package	Vcc (V)	P (mW)	Io (mA)	Topr (°C)	Vol (V) MAX.	Voh (V) MIN.	tpLH (µs) TYP.	tphl (µs) TYP.	Vcc (V)	RL (Ω)	disturbing light illuminance EVDX(Ix) TYP.
IS471FE*1, *3	Built-in pulse driver circuit at the emitter side, synchronous detector circuit, amplifier circuit and demodulator circuit	Visible light cut-off epoxy resin	-0.5 to +16	250	50	-25 to +60	0.35	4.97	400	400	5	280	7 000

^{*1} IS471FE is less susceptible to disturbing effects thanks to the light modulation system

^{*2} Vcc = 5 V *3 Straight lead type (IS471FSE) is also available.

<For laser beam printers (laser beam origin detection)>

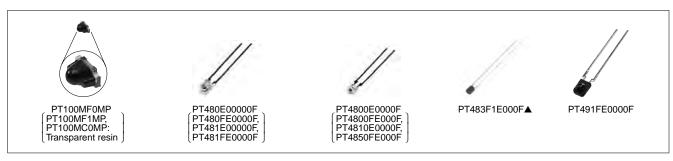
(Ta = 25°C)

			Electro-optical characteristics							
Madal Na	Time	Dockogo	Recommended supply	Voн	Vol	$\mbox{H} \rightarrow \mbox{L}$ delay time variation				
Model No.	Туре	Package	voltage Vcc (V)	(V) MIN.	(V) MAX.	ΔtphL (ns) MAX.				
GA220T2L2IZ▲	2-PD, differential type	Transparent epoxy resin 18-pin	4.5 to 5.5	4.9	0.6	±8.5				

The model marked with ▲ may not be available in the near future. Contact with SHARP for details before use.

PHOTOTRANSISTOR LINEUP / **PHOTOTRANSISTORS**

■ Phototransistor Lineup


			Half	Mod	lel No.
Package	Output type	Features	sensitivity angle	Standard	Visible light cut-off
Epoxy resin with lens	Single phototransistor	General purpose/Narrow acceptance	±13°	PT480E00000F	PT480FE0000F
		Compact, thin	±35°	PT4800E0000F	PT4800FE000F / PT4850FE000F
	Darlington phototransistor	High sensitivity/Narrow acceptance	±13°	PT481E00000F	PT481FE0000F
		High sensitivity/Narrow acceptance/Long lead	±13°	_	PT483F1E000F▲
		High sensitivity/Intermediate acceptance	±40°	_	PT491FE0000F
Surface mounting leadless type	Single phototransistor	Compact (side view/top view mounting possible)	±15°	PT100MC0MP	PT100MF0MP
	Darlington phototransistor	Compact (side view/top view mounting possible)	±15°	_	PT100MF1MP

■ Phototransistors

σ.			Absolu	Absolute maximum ratings			lc (ı	mA)		ICEO((A)	Δθ	λр
Type	Model No.	Package	VCEO (V)	Pc (mW)	Topr (°C)	MIN.	MAX.	VCE (V)	Ee (mW/cm ²)	MAX.	VCE (V)	(°) TYP.	(nm) TYP.
	PT100MC0MP	Surface mounting	35	75	-30 to +85	1.7	5.1	5	1	1 × 10 ⁻⁷	20	±15	900
	PT100MF0MP*1	leadless type with lens	35	75	-30 to +85	1.15	3.45	5	1	1 × 10 ⁻⁷	20	±15	910
4	PT480E00000F		35	75	-25 to +85	0.4	TYP. 1.7	5	1	1 × 10 ⁻⁷	20	±13	800
Single	PT480FE0000F*1		35	75	-25 to +85	0.25	TYP. 0.8	5	1	1 × 10 ⁻⁷	20	±13	860
0)	PT4800E0000F	Epoxy resin with lens	35	75	-25 to +85	0.12	TYP. 0.4	5	1	1×10 ⁻⁷	20	±35	800
	PT4800FE000F*1		35	75	-25 to +85	0.08	TYP. 0.25	5	1	1 × 10 ⁻⁷	20	±35	860
	PT4850FE000F*1		35	75	-25 to +85	0.12	0.56	5	1	1 × 10 ⁻⁷	20	±35	860
	PT481E00000F		35	75	-25 to +85	1.5	25	2	0.1	1 × 10 ⁻⁶	10	±13	800
u	PT481FE0000F*1		35	75	-25 to +85	0.9	27	2	0.1	1 × 10 ⁻⁶	10	±13	860
Darlington	PT483F1E000F*1▲	Epoxy resin with lens	35	75	-25 to +85	1.5	4.0	2	0.1	1 × 10 ⁻⁶	10	±13	860
Dar	PT491FE0000F*1		35	75	-25 to +85	0.2	0.8	2	Ev, 2 lx	1 × 10 ⁻⁶	10	±40	860
	PT100MF1MP*1	Surface mounting leadless type with lens	35	75	-30 to +85	0.2	1.2	5	0.01	1×10 ⁻⁶	10	±15	860

^{*1} Visible light cut-off type

The model marked with a may not be available in the near future. Contact with SHARP for details before use.

■ PIN Photodiodes

(Ta = 25°C)

Model No.	Features	Package (Material)	Active area (mm²)	Topr (°C)	Isc (µA) MIN.	Ev (lx)	ld (A) MAX.	VR (V)	tr, tf (µs) TYP.	VR (V)	RL (kΩ)	λρ (nm) TYP.
PD410PI2E00F		Visible light cut-off epoxy resin with condenser (lens)	3.31	-25 to +85	2.5	100	1 × 10 ⁻⁸	10	0.2	10	1	1 000
PD411PI2E00F	PIN type	Transparent epoxy resin with condenser (lens)	3.31	-25 to +85	5.0	100	1 × 10 ⁻⁸	10	0.2	10	1	960
PD412PI2E00F		Transparent epoxy resin with condenser (lens)	3.31	-25 to +85	3.5	100	1 × 10 ⁻⁸	10	0.25	10	1	800
PD413PI2E00F	PIN type IrDA1.0	Visible light cut-off epoxy resin with condenser (lens)	3.31	-25 to +85	MIN. 4.5 (TYP. 5.4)	100	1 × 10 ⁻⁸	10	0.2	10	1	960
PD100MC0MP	Surface mounting leadless type	Transparent epoxy resin board with lens	_	-30 to +85	0.6	100	1 × 10 ⁻⁸	10	0.01	15	0.18	820
PD100MF0MP	Surface mounting leadless type	Visible light cut-off epoxy resin board with lens	_	-30 to +85	0.4	100	1 × 10 ⁻⁸	10	0.01	15	0.18	850

PD410PI2E00F

(PD411PI2E00F: transparent; PD412PI2E00F: transparent, PD413PI2E00F

PD100MC0MP (PD100MF0MP: black)

INFRARED EMITTING DIODE LINEUP/ INFRARED EMITTING DIODES

■ Infrared Emitting Diode Lineup

Туре	Package	Featu	ıres	Half intensity angle	Model No.
Single-end lead (Side view type)	Epoxy resin with lens	General purpose/Narrow bear	n angle	±13°	GL480E00000F
7,7	En annuación with lange	Compact and thin		±30°	GL4800E0000F
Surface mount type	Epoxy resin with lens/ leadless (Mountable for Top view/	Compact/Narrow beam angle		±10°	GL100MN0MP
	Side view type)		High output type	±10°	GL100MN1MP
		Compact/Wide beam angle		±80°	GL100MD1MP1

■ Infrared Emitting Diodes

 $(Ta = 25^{\circ}C)$

			solute	maximu	m ratings	Radia	nt flux Φe	(mW)		VF (V)		Δθ	λр
Model No.	Package, features	IF (mA)	VR (V)	P (mW)	Topr (°C)	MIN.	TYP.	IF (mA)	TYP.	MAX.	IF (mA)	(°) TYP.	(nm) TYP.
GL480E00000F	Epoxy resin with lens	50	6	75	-25 to +85	0.7	_	20	1.2	1.4	20	±13	950
GL4800E0000F	Epoxy resiir with tens	50	6	75	-25 to +85	0.7	1.6	20	1.2	1.4	20	±30	950
GL100MN0MP	Surface mounting leadless type, epoxy resin board with lens	50	6	75	-30 to +85	1.0	3.0 (MAX.)	20	1.2	1.4	20	±10	940
GL100MN1MP	Surface mounting leadless type, epoxy resin board with lens, high output type	50	6	75	-30 to +85	2.0	6.0 (MAX.)	20	1.2	1.5	20	±10	940
GL100MD1MP1	Surface mounting leadless type, epoxy resin board with lens, wide beam angle	50	6	75	-30 to +85	-	6.0 (MAX.)	20	-	1.5	20	±80	940

OPTICAL-ELECTRIC SENSOR LINEUP

■ Distance Measuring Sensor Lineup

Output	Detected distance		Features	Model No.
1-bit digital output according to distance measuring	1.5 cm	Battery drive compatible, o	compact, 1-bit digital output	
			Capable of operation at high temperature (–30 to +105°C)	GP2Y5D91S00F
	5 cm	Battery drive compatible, of	compact, 1-bit digital output	GP2Y0D805Z0F
	10 cm	Battery drive compatible, of	compact, 1-bit digital output	GP2Y0D810Z0F
			Wide operating temperature type (–40 to +85°C)	GP2Y0D810Z1F
	15 cm	Battery drive compatible, of	compact, 1-bit digital output	GP2Y0D815Z0F
	13 cm	1-bit digital output		GP2Y0D413K0F
	24 cm	1-bit digital output		GP2Y0D21YK0F
	80 cm	1-bit digital output		GP2Y0D02YK0F

Output	Range of distance measuring		Features	Model No.
Analog voltage output according to distance measuring				
(Including I ² C output)	1.5 to 15 cm		Analog output	GP2Y0AF15 series
	2 to 15 cm		Analog output	GP2Y0A51SK0F
	4 to 30 cm		Analog output	GP2Y0A41SK0F / GP2Y0AF30 series
	4 to 50 cm	CMOS type	Analog output	GP2Y0E02A
			I ² C output	GP2Y0E02B
			Analog, I ² C output	GP2Y0E03
	10 to 80 cm		Analog output	GP2Y0A21YK0F
	10 to 150 cm		Compact ($22 \times 8 \times 7.2$ [T] mm), Analog output	GP2Y0A60SZ0F / GP2Y0A60SZLF
	20 to 150 cm		Analog output	GP2Y0A02YK0F
	100 to 550 cm		Analog output	GP2Y0A710K0F

■ High-Precision Displacement Sensor

Output	Range of distance measuring	Features	Model No.
Voltage output according to distance measuring	4.5 to 6.0 mm	Resolution: 50 µm	GP2Y0AH01K0F

■ Dust Sensor Unit Lineup

Output	Features	Model No.
Analog output	Pulse analog output, single-shot detection of house dust, general purpose	GP2Y1010AU0F

DISTANCE MEASURING SENSORS

■ Distance Measuring Sensors (1)

♦Digital Output

(Ta = 25°C)

			Absolute ma	ximum ratings	Ele	ctro-optical	characteristic	s*1
Model No.	Detected	Factures			Voн	VoL	Dissipation current	
Model No.	distance (cm)	Features	Vcc (V)	Topr (°C)	(V) MIN.	(V) MAX.	Operating (mA)	Standby (µA)
GP2Y5D91S00F	1.5	Light detector, infrared LED and signal processing circuit, short distance measuring type, battery drive compatible (operating power supply: 2.7 to 6.2 V), capable of operation at high temperature	-0.3 to +7	-30 to +105	Vcc -0.6	0.6	TYP. 7	-
GP2Y0D805Z0F	5	Light detector, infrared LED and signal processing circuit, short distance measuring type, battery drive compatible (operating power supply: 2.7 to 6.2 V)	-0.3 to +7	-10 to +60	Vcc -0.6	0.6	MAX. 6.5	MAX. 8
GP2Y0D810Z0F	10	Light detector, infrared LED and signal processing circuit, short distance measuring type, battery drive compatible (operating power supply: 2.7 to 6.2 V)	-0.3 to +7	-10 to +60	Vcc -0.6	0.6	MAX. 6.5	MAX. 8
GP2Y0D810Z1F	10	Light detector, infrared LED and signal processing circuit, short distance measuring type, battery drive compatible (operating power supply: 2.7 to 6.2 V), wide operating temperature type	-0.3 to +7	-40 to +85	Vcc -0.6	0.6	TYP. 5	MAX. 8
GP2Y0D815Z0F	15	Light detector, infrared LED and signal processing circuit, short distance measuring type, battery drive compatible (operating power supply: 2.7 to 6.2 V)	-0.3 to +7	-10 to +60	Vcc -0.6	0.6	MAX. 6.5	MAX. 8
GP2Y0D413K0F	13	Distance measuring sensor united with PSD*, infrared LED and signal processing circuit, digital voltage output according to the measured distance	-0.3 to +7	-10 to +60	Vcc -0.3	0.6	_	I
GP2Y0D21YK0F	24	Distance measuring sensor united with PSD*, infrared LED and signal processing circuit, digital voltage output according to the measured distance	-0.3 to +7	-10 to +60	Vcc -0.3	0.6	MAX. 40	-
GP2Y0D02YK0F	80	Distance measuring sensor united with PSD*, infrared LED and signal processing circuit, long distance measuring type (No external control signal required), digital voltage output according to the measured distance	-0.3 to +7	-10 to +60	Vcc -0.3	0.6	MAX. 50	-

^{*1} Vcc = 5 V

^{*} PSD: Position Sensitive Detector

DISTANCE MEASURING SENSORS

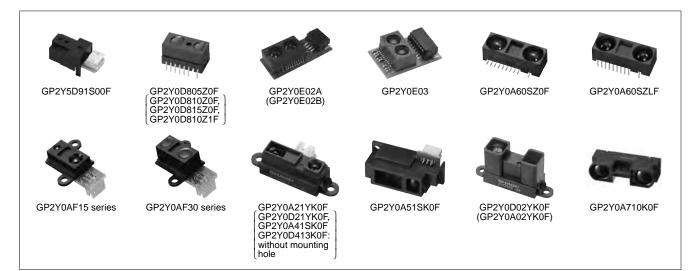
☆New product **★**Under development

■ Distance Measuring Sensors (2) ◆Analog Output (Including I²C output)

(Ta = 25°C)

			Absolute max	ximum ratings	Electro-optical charact	eristics*1
Model No.	Distance measuring range (cm)	Features	Vcc (V)	Topr (°C)	VOH (V) (V) MIN. MAX.	Dissipation current Operating (mA)
★GP2Y0AF15 series	1.5 to 15	Distance measuring sensor united with PSD*, infrared LED and signal processing circuit, short measuring cycle (16.5 ms), compact, lineup of various connector shapes	-0.3 to +7	-10 to +60	Vo (TYP.) = 0.4 V (at L = 15 cm), ΔVo (TYP.) = 2.3 V (at L = 15 cm → 1.5 cm)	TYP. 17
GP2Y0A51SK0F	2 to 15	Distance measuring sensor united with PSD*, infrared LED and signal processing circuit, short measuring cycle (16.5 ms)	-0.3 to +7	-10 to +60	Vo (TYP.) = 0.4 V (at L = 15 cm), ΔVo (TYP.) = 2.25 V (at L = 15 cm → 2 cm)	TYP. 12
★GP2Y0AF30 series	4 to 30	Distance measuring sensor united with PSD*, infrared LED and signal processing circuit, short measuring cycle (16.5 ms), compact, lineup of various connector shapes	-0.3 to +7	-10 to +60	Vo (TYP.) = 0.4 V (at L = 30 cm), Δ Vo (TYP.) = 2.3 V (at L = 30 cm → 4 cm)	TYP. 17
GP2Y0A41SK0F	4 to 30	Distance measuring sensor united with PSD*, infrared LED and signal processing circuit, short measuring cycle (16.5 ms)	-0.3 to +7	-10 to +60	Vo (TYP.) = 0.4 V (at L = 30 cm), ΔVo (TYP.) = 2.25 V (at L = 30 cm → 4 cm)	MAX. 22
☆GP2Y0E02A	4 to 50	Infrared LED and CMOS image sensor with built-in signal processing circuit, compact size (18.9 \times 8 \times 5.2 mm), high-precision measurement, analog output	-0.3 to +3.6	-10 to +60	VOUT (A) 1 = 0.3 to 0.8 V (at L = 50 cm), VOUT (A) 3 = 2.1 to 2.3 V (at L = 4 cm)	MAX. 36
☆GP2Y0E02B	4 to 50	Infrared LED and CMOS image sensor with built-in signal processing circuit, compact size (18.9 × 8 × 5.2 mm), high-precision measurement, I ² C output	-0.3 to +3.6	-10 to +60	D1 = 45 to 50 cm (at L = 50 cm), D3 = 3 to 5 cm (at L = 4 cm)	MAX. 36
☆GP2Y0E03	4 to 50	Infrared LED and CMOS image sensor with built-in signal processing circuit, compact size (16.7 × 11 × 5.2 mm), high-precision measurement, analog / I ² C output both compatible	-0.3 to +5.5	-10 to +60	Vout (A) 1 = 0.3 to 0.8 V, D1 = 45 to 50 cm (at L = 50 cm), Vout (A) 3 = 2.1 to 2.3 V, D3 = 3 to 5 cm (at L = 4 cm)	MAX. 36
GP2Y0A21YK0F	10 to 80	Distance measuring sensor united with PSD*, infrared LED and signal processing circuit, linear voltage output	-0.3 to +7	-10 to +60	Vo (TYP.) = 0.4 V (at L = 80 cm), ΔVo (TYP.) = 1.9 V (at L: 80 cm → 10 cm)	MAX. 40
2 GP2Y0A60SZ0F/ GP2Y0A60SZLF	10 to 150	Distance measuring sensor united with PSD, infrared LED and signal processing circuit, compact type (22 x 8 x 7.2 mm), long distance measuring type (No external control signal required)	-0.3 to +5.5	-10 to +60	Vo (TYP.) = 0.65 V *3 (at L = 150 cm), ΔVo (TYP.) = 3.0 V (at L = 150 cm \rightarrow 20 cm)	MAX. 50
GP2Y0A02YK0F	20 to 150	Distance measuring sensor united with PSD*, infrared LED and signal processing circuit, long distance measuring type (No external control signal required)	-0.3 to +7	-10 to +60	Vo (TYP.) = 0.4 V (at L = 150 cm), Δ Vo (TYP.) = 2.05 V (at L = 150 cm → 20 cm)	MAX. 50
GP2Y0A710K0F	100 to 550	Distance measuring sensor united with PSD*, infrared LED and signal processing circuit, long distance measuring type (No external control signal required)	-0.3 to +7	-10 to +60	Vo (TYP.) = 2.5 V (at L = 100 cm), ∆Vo (TYP.) = 0.7 V (at L = 100 cm → 200 cm)	TYP. 30

^{*1} Vcc = 5 V


* PSD: Position Sensitive Detector

YoC = 3 v
 2 GP2Y0A60SZ0F: Surface mount type
 GP2Y0A60SZ1F: Board insertion type
 *3 When Vcc = 3 V: Vo (TYP.) = 0.35 V (at L = 150 cm); ΔVo (TYP.) = 1.6 V (at L = 150 cm → 20 cm)

DISTANCE MEASURING SENSORS / HIGH-PRECISION DISPLACEMENT SENSOR / DUST SENSOR UNIT

■ High-Precision Displacement Sensor

(Ta = 25°C)

Model No.	Features	Topr (°C)	Operating supply voltage (V)	Dissipation current (mA)	Distance measuring range (mm)	Distance characteristic of output
GP2Y0AH01K0F	Resolution: 50 µm	-10 to +60	4.5 to 5.5	TYP. 20	4.5 to 6.0	TYP. 1.70 V Variation in output over range (4.5 to 6.0 mm)

■ Dust Sensor Unit

 $(Ta = 25^{\circ}C)$

							(/
				Elec	ctro-optical chara	cteristics	
Model No.	Features	Topr (°C)	Operating supply voltage (V)	Dissipation current (mA)	Detection sensitivity V/(0.1 mg/m³)	Output voltage at no dust Voc (V)	Output voltage range Voн (V)
GP2Y1010AU0F	Built-in infrared emitting diode, photodiode and signal processing circuit, compact, single-shot detection of house dust	-10 to +65	4.5 to 5.5	TYP. 11	TYP. 0.5	TYP. 0.9	MIN. 3.4

FIBER OPTICS LINEUP FOR AUDIO EQUIPMENT

■ Fiber Optics Lineup for Audio Equipment

					High annual signal	Model No.			
Connector type	Туре	Outline	Feat	ures	High speed signal transmission	Supply voltage 3 to 5 V	Supply voltage 5 V		
Square connector	Fiber optic transmitter	Without mounting hole	With shutter	Horizontal mounting type	MAX. 13.2 Mb/s		GP1FMV51TK0F		
(EIAJ RC-5720B)	transmitter	Tible	With Shatter	mounting type	MAX. 15.5 Mb/s	GP1FMV31TK0F	Of IT WIVE TITLE		
(2,7,6,1,6,6,7,2,6,5)		With mounting hole	With shutter	Horizontal mounting type	MAX. 13.2 Mb/s	Or it involves	GP1FAV51TK0F*1		
					MAX. 15.5 Mb/s	GP1FAV31TK0F			
					MAX. 50 Mb/s		GP1FAV55TK0F		
				Vertical mounting type	MAX. 13.2 Mb/s		GP1FSV51TK0F		
					MAX. 15.5 Mb/s	GP1FSV31TK0F (mounting height: 15 mm) GP1FSB31TK0F (mounting height: 8.5 mm)			
			With protection cap	Horizontal mounting type	MAX. 13.2 Mb/s		GP1FAV50TK0F*1		
					MAX. 15.5 Mb/s	GP1FAV30TK0F			
	Fiber optic receiver	Without mounting hole	With shutter	Horizontal mounting type	MAX. 13.2 Mb/s		GP1FMV51RK0F		
					MAX. 15.5 Mb/s	GP1FMV31RK0F			
		With mounting hole	With shutter	Horizontal mounting type	MAX. 13.2 Mb/s		GP1FAV51RK0F		
					MAX. 15.5 Mb/s	GP1FAV31RK0F			
			With protection cap	Horizontal mounting type	MAX. 13.2 Mb/s		GP1FAV50RK0F		
					MAX. 15.5 Mb/s	GP1FAV30RK0F			

*1 TTL drive compatible

GP1FMV31 series (GP1FMV51 series)

GP1FAV50TK0F GP1FAV50RK0F, GP1FAV30TK0F, GP1FAV30RK0F

GP1FAV51TK0F GP1FAV31TK0F, GP1FAV55TK0F, GP1FAV51RK0F, GP1FAV31RK0F

GP1FSB31TK0F

GP1FSV31TK0F (GP1FSV51TK0F)

FIBER OPTIC TRANSMITTERS (Square Connector) / FIBER OPTIC RECEIVERS (Square Connector)

■ Fiber Optic Transmitters (Square Connector)

(Ta = 25°C)

	Appea	rance		Absolute ma	kimum ratings		Electro-optical characteristics				
Model No.	Mounting		Features	Vcc	Topr	Supply	delay		current	Pulse width	Transmis- sion speed
	hole	Shutter		(V)	(°C)	voltage (V)	tplh (ns) MAX.	tPHL (ns) MAX.	Icc (mA) MAX.	$\begin{array}{c} \text{distortion} \\ \Delta \text{tw} \\ \text{(ns)} \end{array}$	(Mb/s) MAX.
GP1FMV31TK0F	No	Yes	Compact	-0.5 to +7	-20 to +70	2.7 to 5.25	180	180	12	±15	15.5
GP1FMV51TK0F	No	Yes	Compact	-0.5 to +7	-20 to +70	4.75 to 5.25	180	180	13	±15	13.2
GP1FAV30TK0F▲	Yes	No	Low voltage drive, with protection cap	-0.5 to +7	-20 to +70	2.7 to 5.25	180	180	12	±15	15.5
GP1FAV50TK0F▲	Yes	No	TTL drive compatible, with protection cap	-0.5 to +7	-20 to +70	4.75 to 5.25 Input voltage: MIN. 2.0 V	180	180	13	±15	13.2
GP1FAV51TK0F	Yes	Yes	TTL drive compatible	-0.5 to +7	-20 to +70	4.75 to 5.25	180	180	13	±15	13.2
GP1FSV51TK0F	No	Yes	Vertical mounting (mounting height: 15 mm)	-0.5 to +7	-20 to +70	4.75 to 5.25	180	180	13	±15	13.2
GP1FAV31TK0F	Yes	Yes	Low voltage drive	-0.5 to +7	-20 to +70	2.7 to 5.25	180	180	12	±15	15.5
GP1FSV31TK0F	No	Yes	Vertical mounting (mounting height: 15 mm)	-0.5 to +7	-20 to +70	2.7 to 5.25	180	180	13	±15	15.5
GP1FAV55TK0F	Yes	Yes	High response speed	-0.5 to +7	-20 to +70	4.75 to 5.25	180	180	13	±15	50
GP1FSB31TK0F	No	Yes	Vertical mounting (mounting height: 8.5 mm)	-0.5 to +7	-20 to +70	2.7 to 5.25	180	180	13	±15	15.5

The model marked with ▲ may not be available in the near future. Contact with SHARP for details before use.

■ Fiber Optic Receivers (Square Connector)

(Ta = 25°C)

	Appea	rance		Absolute r	maxim	um ratings		Electro-optical characteristics					
Model No.	Mounting		Features		loL	Topr	Supply	Propagation delay time		Dissipation current	Pulse width	Transmis- sion speed	
Wiodel (Vo.	hole		routico	Vcc (V)	(mA)	(°C)	voltage (V)	tPLH (ns) MAX.	tPHL (ns) MAX.	Icc (mA) MAX.	$\begin{array}{c} {\rm distortion} \\ {\rm \Delta tw} \\ {\rm (ns)} \end{array}$	T (Mb/s) MAX.	
GP1FMV31RK0F	No	Yes	Compact, low voltage drive	-0.5 to +7	10	-20 to +70	2.7 to 3.6	180	180	15	±20	15.5	
GP1FMV51RK0F	No	Yes	Compact	-0.5 to +7	10	-20 to +70	4.75 to 5.25	180	180	25	±20	13.2	
GP1FAV30RK0F▲	Yes	No	Low voltage drive, with protection cap	-0.5 to +7	10	-20 to +70	2.7 to 3.6	180	180	15	±20	15.5	
GP1FAV50RK0F▲	Yes	No	With protection cap	-0.5 to +7	10	-20 to +70	4.75 to 5.25	180	180	25	±20	13.2	
GP1FAV51RK0F	Yes	Yes		-0.5 to +7	10	-20 to +70	4.75 to 5.25	180	180	25	±20	13.2	
GP1FAV31RK0F	Yes	Yes	Low voltage drive	-0.5 to +7	10	-20 to +70	2.7 to 3.6	180	180	15	±20	15.5	

The model marked with \blacktriangle may not be available in the near future. Contact with SHARP for details before use.

IR DETECTING UNIT FOR REMOTE CONTROL LINEUP (CLASSIFIED BY FORM)

■ IR Detecting Unit for Remote Control Lineup (Classified by Form)

	Pac	kage			
Туре	Form	Detection position* ⁵ (from PCB)	Features	Operating voltage	Model No.
etecting unit emote control	Compact, thin typ SMD (4.5 \times 5.0 \times			3 to 5 V General type	GP1USC3xXP series
	Compact type SMD (6.8 × 2.1 ×	2.35 t mm)		3 to 5 V	GP1UF31 series
	Lead L bend				
	with shield case (holder)	16.0 mm* ¹	Compact size	3 to 5 V	GP1UE28XK0VF series
	(5 V	GP1UM28XK0VF series
				3 to 5 V General type	GP1UE28xXKC4 series
			Compact size, Strengthened resistance to electromagnetic induction noise (Mesh type)	3 to 5 V	GP1UE28RK0VF series
			71 -7	5 V	GP1UM28RK0VF series
				3 to 5 V General type	GP1UE28xRKC4 series
		12.0 mm* ²	Compact size	3 to 5 V	GP1UE27XK0VF series
				5 V	GP1UM27XK0VF series
				3 to 5 V General type	GP1UE27xXKC4 series
			Compact size, Strengthened resistance to electromagnetic	a	
			induction noise (Mesh type)	3 to 5 V	GP1UE27RK0VF series
				5 V	GP1UM27RK0VF series
				3 to 5 V General type	GP1UE27xRKC4 series
		6.8 mm*3	Compact size	3 to 5 V	GP1UE26XK0VF series
				5 V	GP1UM26XK0VF series
				3 to 5 V General type	GP1UE26xXKC4 series
			Compact size, Strengthened resistance to electromagnetic		0044500045
			induction noise (Mesh type)	3 to 5 V	GP1UE26RK0VF series
					GP1UM26RK0VF series
	Lead straight with shield case		Compact size, Strengthened resistance to electromagnetic	3 to 5 V General type	GP1UE26xRKC4 series
	(holder)	19.0 mm	induction noise (Mesh type)	3 to 5 V	GP1UE29QK0VF series
				5 V	GP1UM29QK0VF series
				3 to 5 V General type	GP1UE29xQKC4 series
		9.6 mm	Compact size	3 to 5 V	GP1UE28YK0VF series
				5 V	GP1UM28YK0VF series
				3 to 5 V General type	GP1UE28xYKC4 series
			Compact size, Strengthened resistance to electromagnetic induction noise (Mesh type)	3 to 5 V	GP1UE28QK0VF series
				5 V	GP1UM28QK0VF series
		Lead straight		3 to 5 V General type	GP1UE28xQKC4 series
	Holderless	6.0 mm		3 to 5 V	GP1UX31QS series
				5 V	GP1UX51QS series
				3 to 5 V General type	GP1UXC4xQS series
		Lead L bend*4 5.3 mm		3 to 5 V	GP1UX31RK series
				5 V	GP1UX51RK series
				3 to 5 V General type	GP1UXC4xRK series

^{*1} Mesh type (strengthened resistance to electromagnetic induction noise): 16.4 mm

^{*5} Lead straight: Distance from lens center to mounting board upper surface
No mesh lead L bend: Distance from tip of lens to mounting board upper surface
Mesh-type lead L bend: Distance from tip of mesh to mounting board upper surface

IR DETECTING UNITS FOR REMOTE CONTROL

■ IR Detecting Units for Remote Control

 $(Ta = 25^{\circ}C)$

Series No. Voc. (V) Topr (**) violage Co. Voc. (V) MoV. MoV. MoV. Vov. MoV. Size (mm) Interpretation PILIP31XXP0F** 0 to 6.0 -30 to +85 2.7 to 5.5 0.6 Voc0.5 0.45 *3 5.4 * 4.8 * 2.1 * 2.35 -30 mg/stible PILIP31XXP0F** 0 to 6.0 -30 to +85 2.7 to 5.5 0.6 Voc0.5 0.45 *3 5.4 * 5.4 \$ 1.3 -3 mg/stible Voc.			Absolute ma	ximum ratings	Operating	Electi	rical charac	teristic	s			
### Care Provided Representation of the Provided Representatio	Туре	Series No.	Vcc (V)	Topr (°C)	voltage	(mA)*1	(V)	(V)	(kHz)	Size (mm)	Terminal layout	
OFTUEZBXKKC4	urface-mount type, eflow soldering		0 to 6.0	-30 to +85	2.7 to 5.5	0.4	Vcc-0.5	0.45	*4	6.8 × 2.1 × 2.35	-	
Tith shield case (holder), to 5 V drive (New type) OF 1UE28x/KC4	ompatible	GP1USC3xXP	0 to 6.0	-30 to +85	2.7 to 5.5	0.6	Vcc-0.5	0.45	*3	5 × 4.5 × 1.3	_	
this shield case (holder), of 5 V drive, (New type) GP1UE28xXRC4		GP1UE26xXKC4	0 to 6.0	-10 to +70	2.7 to 5.5	0.6	Vcc-0.5	0.45	*3	$5.6 \times 9.6 \times 6.8$		
OF 3 V drive (New type) GP1UE28x/KCV4	lith shield case (holder)	GP1UE27xXKC4	0 to 6.0	-10 to +70	2.7 to 5.5	0.6	Vcc-0.5	0.45	*3	5.6 × 9.6 × 12.0		
GPIUEZ8XRKC4 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 -3 5.6 × 9.6 × 7.2 FPIUEZ8XRKC4 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 -3 5.6 × 9.6 × 7.2 FPIUEZ8XRKC4 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 -3 5.6 × 9.6 × 16.4 FPIUEZ8XRKC4 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 -3 5.6 × 9.6 × 16.4 FPIUEZ8XRKC4 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 -3 5.6 × 9.6 × 16.4 FPIUEZ8XRKC4 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 -3 5.6 × 9.6 × 16.4 FPIUEZ8XRKC4 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 -3 5.6 × 9.6 × 16.4 FPIUEZ8XRKC4 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 -3 5.6 × 9.6 × 16.4 FPIUEZ8XRKC4 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 -3 5.6 × 9.6 × 16.4 FPIUMZ8XRVVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 -3 5.6 × 9.6 × 16.0 FPIUMZ8XRVVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 -3 5.6 × 9.6 × 12.0 FPIUMZ8XRVVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 -3 5.6 × 9.6 × 12.0 FPIUMZ9XRVVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 -3 5.6 × 9.6 × 12.0 FPIUMZ9XRVVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 -3 5.6 × 9.6 × 12.0 FPIUMZ9XRVVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 -3 5.6 × 9.6 × 12.0 FPIUMZ9XRVVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 -3 5.6 × 9.6 × 12.0 FPIUMZ9XRVVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 -3 5.6 × 9.6 × 16.0 FPIUMZ9XRVVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 -3 5.6 × 9.6 × 12.0 FPIUMZ9XRVVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.4 Vcc-0.5 0.45 -3 5.6 × 9.6 × 12.0 FPIUMZ9XRVVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.4 Vcc-0.5 0.45 -3 5.6 × 9.6 × 12.0 FPIUMZ9XRVVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.4 Vcc-0.5 0.45 -3 5.6 × 9.6 × 12.0 FPIUMZ9XRVVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.4 Vcc-0.5 0.45 -3 5.6 × 9.6 × 12.0 FPIUMZ9XRVVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.4 Vcc-0.5 0.45 -3 5.6 × 9.6 × 12.0 FPIUMZ9XRVVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.4 Vcc-0		GP1UE28xXKC4	0 to 6.0	-10 to +70	2.7 to 5.5	0.6	Vcc-0.5	0.45	*3	5.6 × 9.6 × 16.0		
th shield case (holder), to 5 V drive registrance to rectromagnetic induction size (New type) GP1UEZ78KC4 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 *3 5.6 × 9.6 × 16.4 GP1UEZ8KC4 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 *3 5.6 × 9.6 × 16.4 GP1UEZ8KC4 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 *3 5.6 × 9.6 × 16.4 GP1UEZ8KC4 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 *3 5.6 × 9.6 × 16.4 GP1UEZ8KC4 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 *3 5.6 × 9.6 × 16.4 GP1UEZ8KC4 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 *3 5.6 × 9.6 × 16.2 × 21.9 (19)° 2 Vcd. Vcd. Vcd. Vcd. Vcd. Vcd. Vcd. Vcd.		GP1UE28xYKC4	0 to 6.0	-10 to +70	2.7 to 5.5	0.6	Vcc-0.5	0.45	*3			
This hield case (holder), V drive, and the sheld case (holder), V drive are githered resistance to retromagnetic induction labe. GP1UM28KRVF 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 0.60 0.60 0.60 0.5 0.45 0.5 0.6 0.96 0.70 0.45 0.5 0.6 0.96 0.70 0.96		GP1UE26xRKC4	0 to 6.0	-10 to +70	2.7 to 5.5	0.6	Vcc-0.5	0.45	*3	$5.6 \times 9.6 \times 7.2$		
rengthened resistance to determinance induction size (New type) GP1UE28xQKC4 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 *3 56.×9.0 × 12.5(9.6)*2	Vith shield case (holder),	GP1UE27xRKC4	0 to 6.0	-10 to +70	2.7 to 5.5	0.6	Vcc-0.5	0.45	*3	5.6 × 9.6 × 12.4		
GP1UE28XQKC4	to 5 V drive, trengthened resistance to	GP1UE28xRKC4	0 to 6.0	-10 to +70	2.7 to 5.5	0.6	Vcc-0.5	0.45	*3	5.6 × 9.6 × 16.4		
Carting Spring Carting	ectromagnetic induction pise (New type)	GP1UE28xQKC4	0 to 6.0	-10 to +70	2.7 to 5.5	0.6	Vcc-0.5	0.45	*3			
Center Company Compa		GP1UE29xQKC4	0 to 6.0	-10 to +70	2.7 to 5.5	0.6	Vcc-0.5	0.45	*3			
tith shield case (holder), V drive GP1UM28YKOVF O1 to 6.0	With shield case (holder), 5 V drive	GP1UM26XK0VF	0 to 6.0	-10 to +70	4.5 to 5.5	0.6 (0.65)	Vcc-0.5	0.45	*3	$5.6 \times 9.6 \times 6.8$		
CP1UM28XK0VF 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 *3 5.6 x 9.6 x 16.0		GP1UM27XK0VF	0 to 6.0	-10 to +70	4.5 to 5.5	0.6 (0.65)	Vcc-0.5	0.45	*3	5.6 × 9.6 × 12.0		
GP1UM2RKOVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 *3 12.5(9.6)*2 Center (Vcc viring induction lise) GP1UM2RKOVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 *3 5.6 × 9.6 × 7.2 Center (Vcc viring induction lise) GP1UM2RKOVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 *3 5.6 × 9.6 × 12.4 (Vcc viring induction lise) GP1UM2RKOVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 *3 5.6 × 9.6 × 16.4 (Vcc viring induction lise) GP1UM2PKOVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 *3 5.6 × 9.6 × 16.2 × 21.9(19)*2 (1.5 × 21.9(1.5 × 21.9(19)*2 (1.5 × 21.9(19)*2 (1.5 × 21.9(1.5 × 21.9(1.5 × 21.9(1.5 × 21.9(1.5 × 21.9(1.5 × 21.9(1.5 × 21.9(1.5 × 21.9(1.5 ×		GP1UM28XK0VF	0 to 6.0	-10 to +70	4.5 to 5.5	0.6 (0.65)	Vcc-0.5	0.45	*3	$5.6\times9.6\times16.0$		
Continue		GP1UM28YK0VF	0 to 6.0	-10 to +70	4.5 to 5.5	0.6 (0.65)	Vcc-0.5	0.45	*3			
Tith shield case (holder), V drive, regriptened resistance to ectromagnetic induction bise GP1UM28RK0VF 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 *3 5.6 × 9.6 × 16.4 6.4 cetromagnetic induction between the ectromagnetic induction be		GP1UM26RK0VF	0 to 6.0	-10 to +70	4.5 to 5.5	0.6 (0.65)	Vcc-0.5	0.45	*3	$5.6\times9.6\times7.2$	Center	
rengthened resistance to ectromagnetic induction sise GP1UM28QK0VF GP1UM29QK0VF O to 6.0 GP1UM29QK	ith shield case (holder),	GP1UM27RK0VF	0 to 6.0	-10 to +70	4.5 to 5.5	0.6 (0.65)	Vcc-0.5	0.45	*3	$5.6\times9.6\times12.4$	VCC	
Cartiformagnetic induction GP1UM28QKOVF 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 (0.65) Vcc-0.5 0.45 *3 5.6 × 9.0 × 12.5(9.6)*2 (5.6 × 16.2 × 21.9(19)*2 (5.6 × 16.2 × 16.2 × 16.2 × 16.2 × 16.2 × 16.2 × 16.2 × 16.2 × 16.2 × 16.2 × 16.2 × 16.2 × 16		GP1UM28RK0VF	0 to 6.0	-10 to +70	4.5 to 5.5	0.6 (0.65)	Vcc-0.5	0.45	*3	$5.6\times9.6\times16.4$		
GP1UE28XK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.6 × 12.0 GP1UE28XK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.6 × 12.0 GP1UE28XK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.6 × 12.0 GP1UE28XK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.6 × 12.0 GP1UE28XK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.6 × 7.2 GP1UE28XK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.6 × 7.2 GP1UE28XK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.6 × 7.2 GP1UE28XK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.6 × 12.4 GP1UE28XK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.6 × 12.4 GP1UE28XK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.6 × 12.4 GP1UE28XK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.6 × 12.4 GP1UE28XK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.6 × 12.4 GP1UE28XK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.6 × 12.4 GP1UE29XK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.6 × 16.4 GP1UE29XK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.6 × 16.4 GP1UE29XK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 *3 5.5 × 5.3 × 7.5 GP1UXC4xQS 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 *3 5.5 × 5.3 × 7.5 GP1UXC4xQR 0 to 6.0 -10 to +70 2.7 to 5.5 0.6 Vcc-0.5 0.45 *3 5.5 × 5.3 × 7.5 GP1UXS1QS 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 Vcc-0.5 0.45 *3 5.5 × 5.3 × 7.5 GP1UXS1QS 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 Vcc-0.5 0.45 *3 5.5 × 5.3 × 7.5 GP1UXS1QS 0 to 6.0 -10 to +70 4.5 to 5.5 0.4 Vcc-0.5 0.45 *3 5.5 × 5.3 × 7.5 GP1UXS1QS 0 to 6.0 -10 to +70 4.5 to 5.5 0.4 Vcc-0.5 0.45 *3 5.5 × 5.3 × 7.5 GP1UXS1QS 0 to 6.0 -10 to +70 4.5 to 5.5 0.4 Vcc-0.5 0.45 *3 5.5 × 5.3 × 7.5 GP1UXS1QS 0 to 6.0 -10 to +70 4.5 to 5.5 0.4 Vcc-0.5 0.45 *3 5.5 × 5.3 × 7.5 GP1UXS1QS 0 to 6.0 -10 to +70 4.5 to 5.5 0.4 Vcc-0.5 0.45 *3 5.5 × 5.3 × 7.5 GP1UXS1QS 0 to 6.0 -10 to +70 4.5 to 5.5 0.4 Vcc-0.5 0.45 *	ectromagnetic induction	GP1UM28QK0VF	0 to 6.0	-10 to +70	4.5 to 5.5	0.6 (0.65)	Vcc-0.5	0.45	*3			
Characteristric Characteri		GP1UM29QK0VF	0 to 6.0	-10 to +70	4.5 to 5.5	0.6 (0.65)	Vcc-0.5	0.45	*3			
th shield case (holder), o 5 V drive, co 5 V drive, registence to incircomagnetic induction ise GP1UE28QK0VF O to 6.0 GP1UE28QK0VF O to 6.0 GP1UE28QK0VF O to 6.0 GP1UE28CK0VF O to 6.0 GP1UE28CK0VF O to 6.0 GP1UE26RK0VF O to 6.0 GP1UE28CK0VF O to 6.0 GP1UE26RK0VF O to 6.0 GP1UE26RK0VF O to 6.0 GP1UE27CK0VF O to 6.0 GP1UE28CK0VF O to 6.0 GP1UE		GP1UE26XK0VF	0 to 6.0	-10 to +70	2.7 to 5.5	0.4	Vcc-0.5	0.45	*3	$5.6\times9.6\times6.8$		
GP1UE28YK0VF 0 to 6.0	ith shield case (holder).	GP1UE27XK0VF	0 to 6.0	-10 to +70	2.7 to 5.5	0.4	Vcc-0.5	0.45	*3	$5.6\times9.6\times12.0$		
GP1UE28RK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.6 × 7.2 th shield case (holder), o 5 V drive, registened resistance to actromagnetic induction ise GP1UE29RK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.6 × 12.4 vcc-0.5 0.45 *3 5.5 × 5.3 × 7.5 vcc-0.5 vcc-0.5 0.45 *3 5.5 × 5.3 × 7.5 vcc-0.5 vcc-0.5 0.45 *3 5.5 × 5.3 × 7.5 vcc-0.5 vcc-0.5 vcc-0.5 0.45 *3 5.5 × 5.3 × 7.5 vcc-0.5 vcc-0.5 vcc-0.5 vcc-0.5 0.45 *3 5.5 × 5.3 × 7.5 vcc-0.5 v		GP1UE28XK0VF	0 to 6.0	-10 to +70	2.7 to 5.5	0.4	Vcc-0.5	0.45	*3	$5.6\times9.6\times16.0$		
ith shield case (holder), to 5 V drive, rengthened resistance to electromagnetic induction lise (New type) GP1UZC4XRK O to 6.0 O to 6		GP1UE28YK0VF	0 to 6.0	-10 to +70	2.7 to 5.5	0.4	Vcc-0.5	0.45	*3			
Inth shield case (noticer), to 5 V drive, rengthened resistance to ectromagnetic induction lise GP1UE28QK0VF O to 6.0 O to		GP1UE26RK0VF	0 to 6.0	-10 to +70	2.7 to 5.5	0.4	Vcc-0.5	0.45	*3	$5.6\times9.6\times7.2$		
rengthened resistance to actromagnetic induction ise GP1UE28QK0VF O to 6.0 O to 6.0		GP1UE27RK0VF	0 to 6.0	-10 to +70	2.7 to 5.5	0.4	Vcc-0.5	0.45	*3	$5.6\times9.6\times12.4$		
GP1UE28QK0VF 0 to 6.0 -10 to +70 2.7 to 5.5 0.4 Vcc-0.5 0.45 *3 5.6 × 9.0 × 12.5(9.6)*2		GP1UE28RK0VF	0 to 6.0	-10 to +70	2.7 to 5.5	0.4	Vcc-0.5	0.45	*3	$5.6\times9.6\times16.4$		
Colderless, 3 to 5 V drive, rengthened resistance to ectromagnetic induction of seed of the control of the colderless, 5 V drive, rengthened resistance to ectromagnetic induction of the colderless, 5 V drive, rengthened resistance to ectromagnetic induction of the colderless, 5 V drive, rengthened resistance to ectromagnetic induction of the colderless, 3 to 5 V drive, rengthened resistance to ectromagnetic induction of the colderless, 3 to 5 V drive, rengthened resistance to ectromagnetic induction of the colderless, 3 to 5 V drive, rengthened resistance to ectromagnetic induction of the colderless, 3 to 5 V drive, rengthened resistance to ectromagnetic induction of the colderless, 3 to 5 V drive, rengthened resistance to ectromagnetic induction of the colderless of the co	ectromagnetic induction pise	GP1UE28QK0VF	0 to 6.0	-10 to +70	2.7 to 5.5	0.4	Vcc-0.5	0.45	*3			
rengthened resistance to ectromagnetic induction lise (New type) GP1UXC4xRK O to 6.0 GP1UXS1QS O to 6.0 O to 6.0 GP1UXS1QS O to 6.0		GP1UE29QK0VF	0 to 6.0	-10 to +70	2.7 to 5.5	0.4	Vcc-0.5	0.45	*3			
Second	olderless, 3 to 5 V drive, trengthened resistance to	GP1UXC4xQS	0 to 6.0	-10 to +70	2.7 to 5.5	0.6	Vcc-0.5	0.45	*3	5.5 × 5.3 × 7.5		
Center of the deciromagnetic induction of the deciromagnetic i	electromagnetic induction noise (New type)	GP1UXC4xRK	0 to 6.0	-10 to +70	2.7 to 5.5	0.6	Vcc-0.5	0.45	*3	$5.5\times5.3\times7.5$		
ectromagnetic induction bise GP1UX51RK 0 to 6.0 -10 to +70 4.5 to 5.5 0.6 Vcc-0.5 0.45 *3 5.5 x 5.3 x 7.5 GND objection of size of control of	trengthened resistance to	GP1UX51QS	0 to 6.0	-10 to +70	4.5 to 5.5	0.6	Vcc-0.5	0.45	*3	$5.5 \times 5.3 \times 7.5$	Center	
rengthened resistance to ectromagnetic induction GPI IV31PK 0 to 6.0 -10 to +70 4.5 to 5.5 0.4 Vcc-0.5 0.45 *3 5.5 x 5.3 x 7.5	Strengthened resistance to	GP1UX51RK	0 to 6.0	-10 to +70	4.5 to 5.5	0.6	Vcc-0.5	0.45	*3	5.5 × 5.3 × 7.5	GND	
	oldorloss 2 to 5 \/ drive	GP1UX31QS	0 to 6.0	-10 to +70	4.5 to 5.5	0.4	Vcc-0.5	0.45	*3	5.5 × 5.3 × 7.5		
	lectromagnetic induction oise	GP1UX31RK	0 to 6.0	-10 to +70	4.5 to 5.5	0.4	Vcc-0.5	0.45	*3	$5.5 \times 5.3 \times 7.5$		

^{*} A voltage regulator circuit is built-in but may be affected by the usage environment. Install with an externally mounted C and R as a power supply filter.

^{*}A voltage regulator circuit is built-in but may be affected by the usage environment of the usa

Notice
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc.

Except where specially indicated, models listed on this page comply with the RoHS Directive*. For details, please contact SHARP.
"RoHS Directive: Prohibits use of lead, cadmium, hexavalent chromium, mercury and specific brominated flame retardants
(PBBs and PBDEs), with certain exceptions.

Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.