

FEATURES

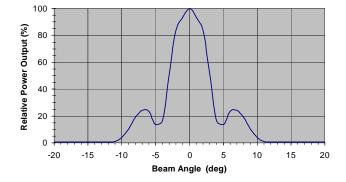
High output power

- High reliability
- · Narrow emission angle

DESCRIPTION

The **PDI-E803** is an 880 nm high power GaAlAs infrared emitter, packaged in a hermetic TO-46 metal header with a dome window glass.

APPLICATIONS


- · Photoelectric switches
- Infrared sources
- Optical readers

ABSOLUTE MAXIMUM RATING (TA)= 23°C UNLESS OTHERWISE NOTED

SYMBOL	PARAMETER	MIN	MAX	UNITS
P_d	Power Dissipation		160	mW
I _f	Continuous Forward Current		100	mA
I _p	Peak Forward Current		3.0	Α
V _r	Reverse Voltage		5	V
T _{STG}	Storage Temperature	-55	+100	°C
To	Operating Temperature	-55	+100	°C
Ts	Soldering Temperature*		+240	°C

^{* 1/16} inch from case for 3 seconds max.

RADIATION PATTERN

RELIABILITY

This API high-reliability detector is in principle able to meet military test requirements (Mil-Std-750, Mil-Std-883) after proper screening and group test. Contact API for recommendations on specific test conditions and procedures.

ELECTRO-OPTICAL CHARACTERISTICS RATING (TA)= 23°C UNLESS OTHERWISE NOTED

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Po	Output Power	$I_f = 100 \text{ mA}$	7.8	9		mW
V_{f}	Forward Voltage	$I_f = 100 \text{ mA}$		1.5	1.9	V
V_r	Reverse Breakdown Voltage	$I_f = 10 \mu A$	5	30		V
λ_{p}	Peak Wavelength	$I_f = 20 \text{ mA}$	865	880	895	nm
$\Delta \lambda$	Spectral Bandwidth @ 50% (FWHM)	$I_f = 20 \text{ mA}$		65		nm
C _t	Terminal Capacitance	$V_r = 0V, f = 1MHz$		18		pF
t _r	Rise Time	$I_f = 20 \text{ mA}$		0.75		uS
t _f	Fall Time	$I_f = 20 \text{ mA}$		0.40		uS