

S1D13746 TV Out Mobile Graphics Engine

Hardware Functional Specification

Document Number: X74B-A-001-02

Status: Revision 2.3 - EPSON CONFIDENTIAL

Issue Date: 2011/06/09

© SEIKO EPSON CORPORATION 2006 - 2011. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other Trademarks are the property of their respective owners

Table of Contents

1	Introduction
	1.1 Scope
	1.2 Abbreviations and Acronyms
	1.3 S1D13746 TV-Out Mobile Graphics Engine Family
2	Operational Overview
	2.1 TV Support
	2.1.1 Writing Window Data
	2.1.2 Scaling Features
	2.1.3 Window Rotation
	2.1.4 Multiple TV Windows
	2.1.5 Single TV Window
	2.1.6 TV Window Border Support
	2.1.7 Double Buffered TV Window
3	Features
	3.1 Integrated Display Buffer
	3.2 CPU Interface
	3.3 Input Data Formats
	3.4 TV Display Support
	3.5 TV Display Features
	3.6 Image Enhancement Engine . </th
	3.7 Clock Source
	3.8 Miscellaneous
4	Block Diagram
5	Pinout
	5.1 Package Pin Mapping
	5.2 Pin Descriptions
	5.2.1 Intel 80 Host Interface
	5.2.2 Serial Peripheral Interface (SPI)
	5.2.3 TV Interface
	5.2.4 Clocks
	5.2.5 Miscellaneous
	5.2.6 Power And Ground
	5.3 Summary of Configuration Options
6	Pin Mapping
	6.1 Intel 80 Data Pins
	6.2 Parallel RGB Data Pins

7	D.C. Characteristics
	7.1 Absolute Maximum Ratings
	7.2 Recommended Operating Conditions
	7.3 Electrical Characteristics
	7.4 DAC Characteristics
	7.5 Power Estimation Guidelines
8	A.C. Characteristics
	8.1 Clock Timing
	8.1.1 Input Clocks
	8.1.2 OSC Clock
	8.1.3 PLL Clock
	8.2 RESET# Timing
	8.3 Host interface Timing
	8.3.1 Intel 80 Interface Timing
	8.4 Serial Interface Timing
	8.4.1 3-Wire Serial Interface Timing
	8.4.2 4-Wire Serial Interface (SPI) Timing
	8.5 Parallel RGB Interface Timing
	8.5.1 Vertical Timing
	8.5.2 Horizontal Timing
	8.5.3 Input Signal Timings Relative to PCLK
	8.6 TV Timing
	8.6.1 TV Output Timing
	8.6.2 TV Output Parameters
9	Clocks
	9.1 Clock Block Diagram
	9.2 PLL Block Diagram
10	Memory Map
11	
••	11.1 Register Mapping
	11.2 Register Set
	11.2 Register Descriptions
	11.3.1 Product Information Registers 65
	11.3.2 Clock Configuration Registers
	11.3.3 TV Configuration Registers
	11.3.4 Input Data Control Registers 86
	11.3.5 Display Output Control Registers
	11.3.6 Display Memory Access Registers
	11.3.7 3X3 Pixel Matrix Filter Registers 11.3.7 103

11.3.8 Miscellaneous Registers	114
11.3.9 General Purpose IO Pins Registers	117
12 Intel 80, 8-Bit Interface Color Formats	. 119
12.1 8 bpp Mode (RGB 3:3:2), 256 colors	.119
12.2 16 bpp Mode (RGB 5:6:5), 65,536 colors	.120
12.3 18 bpp (RGB 6:6:6), 262,144 colors	.121
12.4 24 bpp (RGB 8:8:8), 16,777,216 colors	.122
13 Intel 80, 16-bit Interface Color Formats	. 123
13.1 8 bpp (RGB 3:3:2), 256 colors	.123
13.2 16 bpp (RGB 5:6:5), 65,536 colors	.124
13.3 18 bpp Mode 1 (RGB 6:6:6), 262,144 colors	.125
13.4 18 bpp Mode 2 (RGB 6:6:6), 262,144 colors	.126
13.5 24 bpp Mode 1 (RGB 8:8:8), 16,777,216 colors	.127
13.6 24 bpp Mode 2 (RGB 8:8:8), 16,777,216 colors	.128
14 YUV Timing	. 129
14.1 YUV 4:2:2 with Intel 80, 8-bit Interface	.130
14.2 YUV 4:2:0 ODD Line with Intel 80, 8-bit Interface	.130
14.3 YUV 4:2:0 EVEN Line with Intel 80, 8-bit Interface	.131
14.4 YUV 4:2:2 with Intel 80, 16-bit Interface	.132
14.5 YUV 4:2:0 ODD Line with Intel 80, 16-bit Interface	.133
14.6 YUV 4:2:0 EVEN Line with Intel 80, 16-bit Interface	.134
15 SwivelView™	. 135
15.1 SwivelView TM Concept	. 135
15.2 90° SwivelView TM \ldots	.136
15.2.1 Register Programming	136
15.3 180° SwivelView TM	.137
15.3.1 Register Programming	137
15.4 270° SwivelView TM	.138
15.4.1 Register Programming	138
15.5 Sub-Window Position / Rotation	. 139
16 Image Enhancement Engine	. 140
16.1 3x3 Filter	. 140
16.1.1 Example Programming Values	142
17 Host Interface	. 143
17.1 Using the Intel 80 Interface	
17.1.1 Register Write Procedure	144
17.1.2 Register Read Procedure	145
17.1.3 Sequential Memory Write Procedure	146
17.2 Serial Host Interface	. 147

	17.2.1 3 Wire 9-bit
	17.2.2 SPI Interface
18	Parallel RGB Interface Input
	18.1 Width and Height Auto Detect
19	VBI and Wide-Screen Signalling Function
	19.1 CEA-608-B Auto Mode
	19.2 CEA-608-B Manual Mode
20	Typical Use Case Descriptions
	20.1 Initializing the S1D13746
	20.1.1 Initialization Flow Charts
	20.2 Writing An Image For Display On The TV
	20.3 Use Case Flowcharts
	20.3.1 Host Write Background
	20.3.2 Host Write Overlay
	20.3.3 Streaming Background
	20.3.4 Background and Streaming Overlay
	20.3.5 Update at VSYNC Using TE
	20.4 Example. Enable a Double-Burleted window on TV
~	Devide Deffer Description 470
21	Double Buffer Description
	21.1 Double Buffering Limitations
	21.1 Double Buffering Limitations 175 TV Filter Operation 176
	21.1 Double Buffering Limitations175 TV Filter Operation176 22.1 Generating Custom Luminance (Y) and Color (UV) Filter Coefficients176
22	21.1 Double Buffering Limitations 175 TV Filter Operation 176 22.1 Generating Custom Luminance (Y) and Color (UV) Filter Coefficients 176 22.1.1 Filter Parameters 177
22	21.1 Double Buffering Limitations 175 TV Filter Operation 176 22.1 Generating Custom Luminance (Y) and Color (UV) Filter Coefficients 176 22.1.1 Filter Parameters 177 Power Save Modes 180
22	21.1 Double Buffering Limitations 175 TV Filter Operation 176 22.1 Generating Custom Luminance (Y) and Color (UV) Filter Coefficients 176 22.1.1 Filter Parameters 177 Power Save Modes 180 23.1 Sleep Mode 180
22 23	21.1 Double Buffering Limitations 175 TV Filter Operation 176 22.1 Generating Custom Luminance (Y) and Color (UV) Filter Coefficients 176 22.1.1 Filter Parameters 177 Power Save Modes 180 23.1 Sleep Mode 180 23.2 Standby Mode 182
22 23	21.1 Double Buffering Limitations 175 TV Filter Operation 176 22.1 Generating Custom Luminance (Y) and Color (UV) Filter Coefficients 176 22.1.1 Filter Parameters 177 Power Save Modes 180 23.1 Sleep Mode 180 23.2 Standby Mode 182 External Components 184
22 23	21.1 Double Buffering Limitations175 TV Filter Operation176 22.1 Generating Custom Luminance (Y) and Color (UV) Filter Coefficients17622.1.1 Filter Parameters177 Power Save Modes180 23.1 Sleep Mode18023.2 Standby Mode182 External Components184 24.1 DAC External Components184
22 23 24	21.1 Double Buffering Limitations 175 TV Filter Operation 176 22.1 Generating Custom Luminance (Y) and Color (UV) Filter Coefficients 176 22.1.1 Filter Parameters 177 Power Save Modes 180 23.1 Sleep Mode 180 23.2 Standby Mode 182 External Components 184 24.1 DAC External Components 184 24.2 Crystal Oscillator Circuit 186
22 23 24	21.1 Double Buffering Limitations175TV Filter Operation17622.1 Generating Custom Luminance (Y) and Color (UV) Filter Coefficients17622.1.1 Filter Parameters177Power Save Modes18023.1 Sleep Mode18023.2 Standby Mode182External Components18424.1 DAC External Components18424.2 Crystal Oscillator Circuit186Analog Power Supply Considerations187
22 23 24 25	21.1 Double Buffering Limitations175TV Filter Operation17622.1 Generating Custom Luminance (Y) and Color (UV) Filter Coefficients17622.1.1 Filter Parameters177Power Save Modes18023.1 Sleep Mode18023.2 Standby Mode182External Components18424.1 DAC External Components18424.2 Crystal Oscillator Circuit186Analog Power Supply Considerations18725.1 Guidelines for Analog Power Layout187
22 23 24 25 26	21.1 Double Buffering Limitations175TV Filter Operation17622.1 Generating Custom Luminance (Y) and Color (UV) Filter Coefficients17622.1.1 Filter Parameters177Power Save Modes18023.1 Sleep Mode18023.2 Standby Mode182External Components18424.1 DAC External Components18424.2 Crystal Oscillator Circuit186Analog Power Supply Considerations18725.1 Guidelines for Analog Power Layout187Mechanical Data189
22 23 24 25 26 27	21.1 Double Buffering Limitations 175 TV Filter Operation 176 22.1 Generating Custom Luminance (Y) and Color (UV) Filter Coefficients 176 22.1.1 Filter Parameters 177 Power Save Modes 180 23.1 Sleep Mode 180 23.2 Standby Mode 182 External Components 184 24.1 DAC External Components 184 24.2 Crystal Oscillator Circuit 186 Analog Power Supply Considerations 187 25.1 Guidelines for Analog Power Layout 187 Mechanical Data 189 References 194
22 23 24 25 26 27	21.1 Double Buffering Limitations175TV Filter Operation17622.1 Generating Custom Luminance (Y) and Color (UV) Filter Coefficients17622.1.1 Filter Parameters177Power Save Modes18023.1 Sleep Mode18023.2 Standby Mode182External Components18424.1 DAC External Components18424.2 Crystal Oscillator Circuit186Analog Power Supply Considerations18725.1 Guidelines for Analog Power Layout187Mechanical Data189

1 Introduction

1.1 Scope

This is the Hardware Functional Specification for the S1D13746, TV-Out Embedded Memory Mobile Graphics Engine. Included in this document are timing diagrams, AC and DC characteristics, register descriptions, and power management descriptions. This document is intended for two audiences: Video Subsystem Designers and Software Developers.

This document is updated as appropriate. Please check the Epson Research and Development Website at **www.erd.epson.com** for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

1.2 Abbreviations and Acronyms

The following abbreviations and acronyms are used in this document:

All numbers are in decimal unless marked otherwise (b for binary, h for hexadecimal) $k = 2^{10} = 1024$ when used with regards to memory b = bitB = Bytebpp = bits-per-pixel msb = Most Significant bit lsb = Least Significant bit IO = Input/Output LUT = Look-Up Table NC = No ConnectionYYC = YUV to YUV Converter YRC = YUV to RGB Converter RYC = RGB to YUV Converter VDP = Vertical Display Period VNDP = Vertical Non-display Period DDS = Digital Direct Synthesis POUT = PLL Output

1.3 S1D13746 TV-Out Mobile Graphics Engine Family

The S1D13746 TV-Out Mobile Graphics Engine family currently includes the S1D13746B00 and the S1D13746B01/S1D13746F01. The following table describes the differences between these devices.

Device	Feature Differences			
S1D13746B00	Base Design			
S1D13746B01	 All features of the S1D13746B00 plus: GPIO interrupt and registers are asynchronous and fully functional in SLEEP mode. Chrominance and Luminance filters for TV output improved from 11-TAP to 15-TAP to enhance Composite output. Dot-Crawl elimination circuitry added for NTSC Composite mode. Input and output scalers improved to provide sharper output image. Input pre-scaler (decimation scaler) added to allow input image size of up to 3072x4092. TV block changed to operate with flexible frequency range of 18MHz to 27MHz, and changed clock source for TV block to be selectable between CLKI/OSCI and PLL output divided by 2. This allows the possibility of running CLKI/OSCI from 1MHz to 54MHz range. Square Pixel Correction Enable bit added to auto-scale the output window width to display square pixels. Two more pin functions added to the TE (Tearing Effect) signal. IO cells changed to Fail-Safe type. Pull-Down resistor on the PWRSVE input removed. 			
S1D13746F01	All features of the S1D13746B01 in a QFP15 128-pin package.			

Table 1-1 S1D13746B0x Comparison

2 Operational Overview

The S1D13746 is a Mobile Graphics Engine offering direct TV-output capability allowing for the display of multiple windows and orientations.

The S1D13746 contains a 312k byte display buffer. Input resolutions exceeding the memory space are automatically scaled down to fit. The final display output can be scaled-up and bordered to fit the standard TV resolutions as defined by PAL or NTSC.

TV output can be double-buffered to prevent image tearing during streaming video and also act as a frame-rate converter, allowing slow input video streaming while still maintaining PAL or NTSC output timing.

Input Data can come from a Host processor using an Intel 80 protocol or from a standard TFT display output (Parallel RGB Interface). The S1D13746 can be connected directly to a standard TFT display output. In this case, the registers are programmed using a Serial Interface and the S1D13746 converts the TFT output data appropriately for display on a TV.

All image data uses the Input/Output Window Size/Position registers and is accesses using the Display Memory Data Port. Subsequent windows are considered destructive overlays. Each window can have independent rotation and position characteristics.

The S1D13746 is designed to accept DMA burst accesses from an Intel 80 CPU interface. All accesses to the display buffer are handled through a Display Memory Data Port.

2.1 TV Support

The S1D13746 conforms to both the PAL and NTSC output standards with respect to resolution and output format. Both Composite and S-Video outputs formats are supported. The S1D13746 supports multiple RGB, YUV 4:2:2 and YUV 4:2:0 input formats. All data is converted and stored as YUV 4:2:0.

2.1.1 Writing Window Data

Window data can either be written by a Host processor via the Intel 80 Interface or input by the Parallel RGB Interface. For the Intel 80 processor, the windows can vary in size, For the Parallel RGB Interface, the window size is automatically determined by the horizontal and vertical input timings.

2.1.2 Scaling Features

- Host Input Data can be scaled-down to fit within the available memory.
 - The Input Scaler logic requires an input size, either programmed by the Host or calculated automatically if using the Parallel RGB Interface. The available memory is either the entire display buffer (312k bytes) or 156k bytes if the double buffer feature is enabled. The required scaling ratio from Input Size to memory is automatically calculated.
- Memory Output Data (intended for display on the TV) can be scaled-up for display on the TV (Display Output Scaler).
 - if the resulting scale-up does not equal full resolution as defined by the PAL or NTSC standards, then an automatic border is generated and the resulting image is centered within the border.
 - If displaying multiple images on the TV, the initial background image determines both the Scale-down ratio to memory and the Scale-up ratio to the display. These ratios are used by all other windows.
 - If displaying multiple images on the TV, all subsequent windows are referenced to the top-left of the (auto-centered) background image for position.

2.1.3 Window Rotation

SwivelViewTM provides 90°, 180°, 270° counter-clockwise hardware rotation of the image window as written by the host. All windows can have independent rotation when writing to memory. No additional programming is necessary when enabling these modes.

2.1.4 Multiple TV Windows

Multiple "windows" can be destructively written to the TV display. If multiple windows are required, the first window written is considered the "background". All subsequent windows are stored in memory "on-top" of the background image and are therefore considered destructive.

Multiple TV Windows with Transparency

Any destructive window can have a transparent color associated with it. Only those pixels that are not transparent are actually written to memory. The window is first scaled-down (if necessary) to fit in memory. After the scaler the pixels are compared to the 24-bit YUV value programmed for the transparent color.

There are three modes in which to use the transparent feature.

1. Normal Mode: if the resulting scaled pixels equal the transparent color, they are not written to memory. In this mode there will be color artifacts surrounding the non-transparent color.

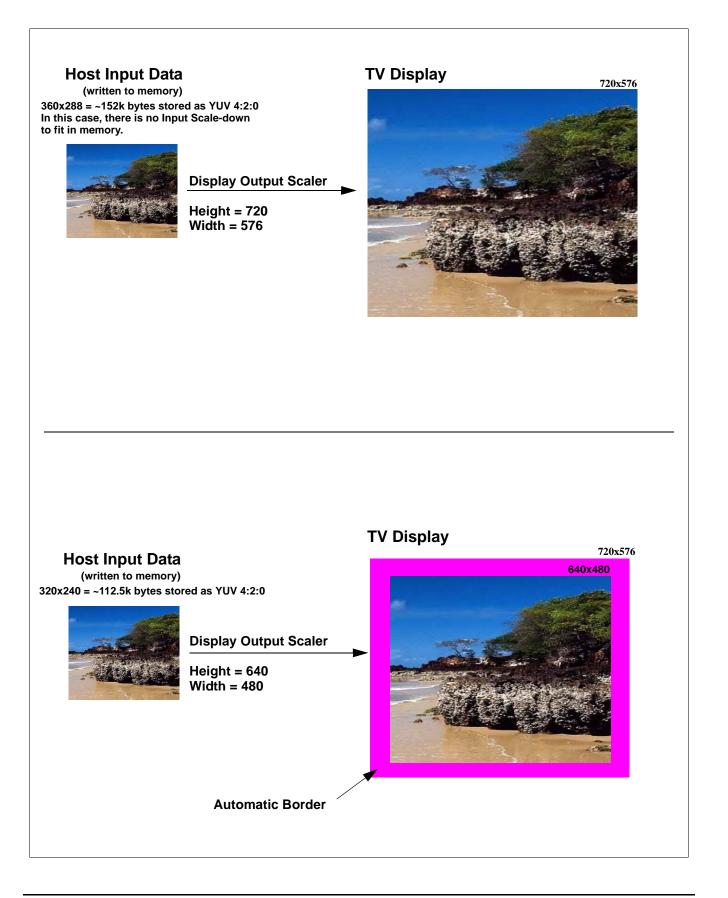
- 2. Black/White Mode: in this mode, the transparent color is limited to black or white with the visible color being the opposite. In this mode any color artifacts are minimized by forcing all pixels to be either transparent or not.
- 3. Text Mode: in this mode, the transparent color intensity range calculated from the Transparency Color Registers determines if the pixel is transparent or not. This mode is similar to Black/White mode with the effect of removing more color artifacts.

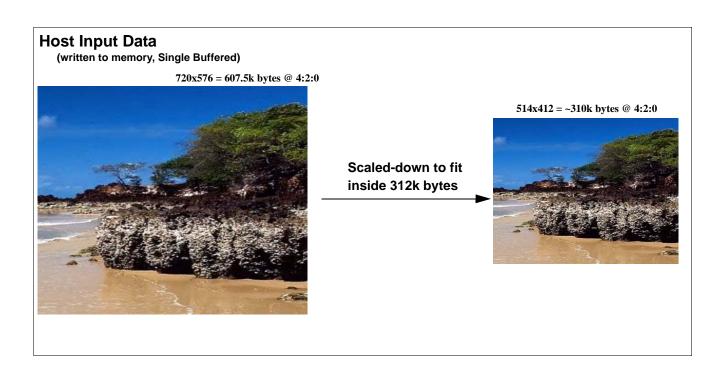
2.1.5 Single TV Window

If only a single window is required, The S1D13746 can scale-down the input data to fit within the memory, scale-up for display on the TV, auto-center and Auto Border if the final output is not full screen.

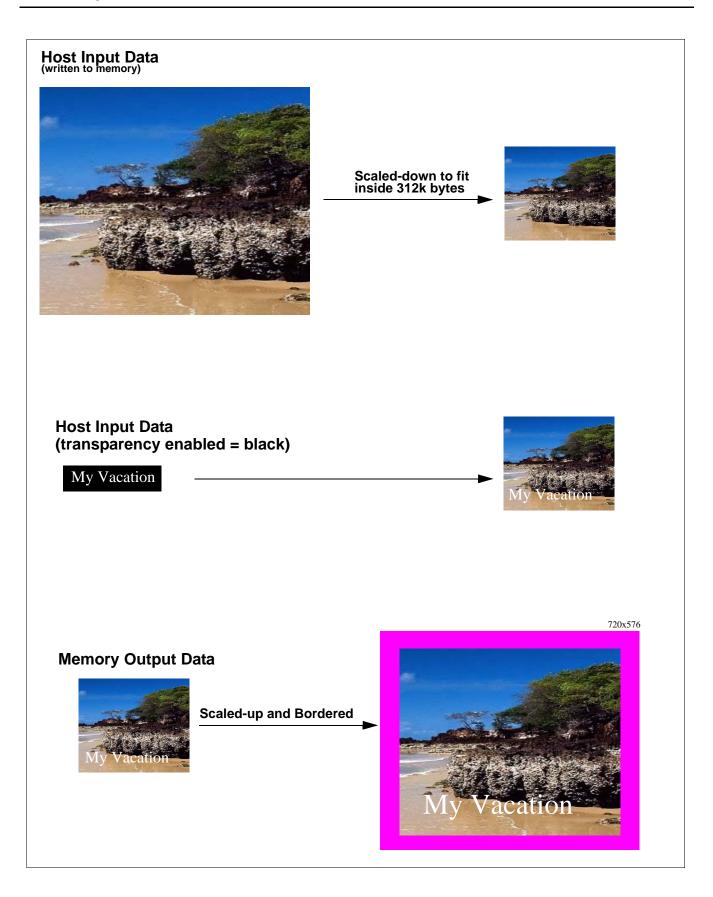
2.1.6 TV Window Border Support

S1D13746 automatically generates a programmable border color around a window where the resulting image size (after scale-up) does not equal the TV output resolution (PAL or NTSC). The window is centered within the border.


2.1.7 Double Buffered TV Window


A single TV window can be double buffered to prevent any visual tearing from a streaming input. This window can be the entire screen resolution or a just a portion.

When configuring a window for streaming video, the S1D13746 automatically double buffers the input data based on the window coordinates. If this window is only a portion of the screen, Buffer #1 is used for the "background" static portion and one of the buffered windows data. Buffer #2 is used only for the other double buffered window data and does not contain any static data from the background.


Interrupting a streaming window to update static information on the screen is permitted since the TV display pipe only uses data from a buffer that has been completely written. Therefore, a single buffer may be repeatedly displayed until the next buffer is ready. If the display pipe is currently using Buffer #2 when the Double Buffer is disabled, the display pipe reverts to using Buffer #1 since it is the only buffer containing the background information. Double-buffering supports the maximum resolutions as defined by the PAL and NTSC standard.

When Double Buffering is enabled, the memory is split into 2 banks of 156k bytes and the scale ratio from the input image to memory is increased to allow the image to fit inside 1/2 the previously available memory.

3 Features

3.1 Integrated Display Buffer

• Embedded 312k byte SRAM display buffer.

3.2 CPU Interface

- 8/16-bit Intel 80 interface (used for display or register data).
- Parallel RGB Interface (display data only).
- Three Wire Serial Interface (register data only).
- Chip select is used to select the S1D13746. When inactive, input data/commands are ignored.

3.3 Input Data Formats

- RGB: 8:8:8, 6:6:6, 5:6:5, 3:3:2.
 - all RGB input data is converted and stored as YUV 4:2:0.
- YUV: 4:2:2, 4:2:0.
 - all YUV input data is converted and stored as YUV 4:2:0.

3.4 TV Display Support

- Composite Output for both PAL and NTSC TV standards.
- S-Video Output for both PAL and NTSC TV standards.
- Programmable 15-tap Chrominance / Luminance Filters.
- Wide-Screen Signalling support (ITU-R BT.1119-2, ETSI EN 300 294, IEC 61880, compliant).
- Closed Caption Support (CEA-608-B).

3.5 TV Display Features

- Input Data can:
 - be scaled-down to fit within available memory
 - be rotated.
 - have an associated transparent color
- Memory Output Data can be scaled-up for display on the TV
- TV image is automatically "bordered" to fit the output resolution, if not scaled to fit.
 - programmable YUV border color
 - auto-center
 - independent aspect ratio is available for Display Output Height/Width scaling factors
- Square pixel correction output width scaling

3.6 Image Enhancement Engine

- 3x3 Pixel Filter
- User defined coefficients
 - individual control for each YUV component
- Display effects include:
 - smooth, sharpen, blur, detail, edge enhance, emboss, contour, flicker filter, sepia

3.7 Clock Source

- Internal programmable PLL
- Single oscillator input: CLKI (determined by CNF2)
- or
- Two-terminal Crystal support: OSCI, OSCO (determined by CNF2)

Note

An 18MHz to 27MHz clock is required by internal TV DDS logic in order to derive appropriate PAL and NTSC output timings. For any clock source other than 27MHz, the PLL should be programmed for 54MHz.

- CLKI available as CLKOUT (separate CLKOUTEN pin associated with output)
 - output state = 0 when disabled

3.8 Miscellaneous

- Hardware / Software Power Save mode
 - Input pin to Enable/Disable Power Save Mode
- General Purpose Input/Output pins are available (GPIO[7:0])
 - INT pin associated with selectable GPIO inputs
- Package:

S1D13746B01B	PFBGA 100 pin (7mm x 7mm)
S1D13746F01A	QFP15 128 pin

4 Block Diagram

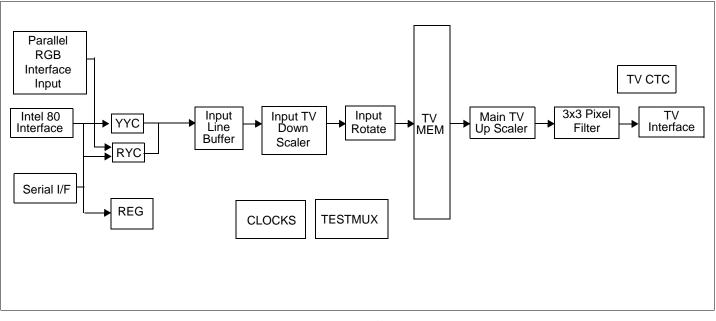


Figure 4-1: S1D13746 Block Diagram

5 Pinout

5.1 Package Pin Mapping

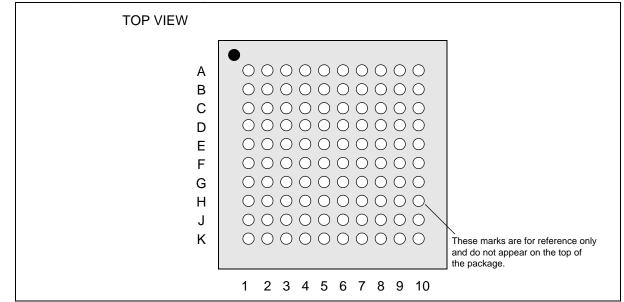


Figure 5-1: S1D13746 PFBGA 100-pin Pinout Diagram (Top View)

А	NC	COREVDD	SCLK	SO	SI	VSS	PCLK	DE	VSS	NC
В	PWRSVE	TESTEN	GPIO7	CS#	GPIO1	GPIO0	TE	D/C#	COREVDD	MD15
С	SCANEN	TEST0	GPIO6	GPIO5	GPIO2	GPIO_INT	GPIO4	WE#	VSS	MD13
D	DACVEE	DACVCC	TEST2	SIOVDD	GPIO3	RESET#	IOVDD	MD11	MD12	MD9
Е	BOUT	DACVCC	DACVEE	TEST1	CNF0	RD#	MD10	MD8	MD7	MD6
F	DACVEE	VADJ	DACVCC	VSS	CNF1	IOVDD	MD14	MD5	MD4	MD3
G	DACVEE	VREF	DACVEE	VSS	CNF3	CNF2	MD0	MD1	MD2	COREVDD
н	AOUT	DACVCC	DACVCC	VSS	VSS	IOVDD	VSS	IOVDD	CLKOUTEN	CLKOUT
J	DACVEE	DACVEE	DACVCC	IOVDD	COREVDD	OSCVSS	OSCVDD	VCP	VSS	CLKI
k	NC	NC	DACVEE	VSS	VSS	OSCI	OSCO	PLLVDD	PLLVSS	NC
	1	2	3	4	5	6	7	8	9	10

Note

Pins marked as NC are not used and must be left unconnected.

	96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65	
	NC VSS CLKOUTEN CLKOUTEN CLKOUTEN CCREVDD NC COREVDD ND ND ND ND ND ND ND ND ND ND ND ND N	64
97 10VDD 98	VCF	62
99 COBEVD		62
100 101 101 WE#		60
102	OSCVDI	50
103 GPIO4	OSCO	50
104 D/C#	NO	57
105 TE	OSCVS	55
106 GPIO_IN 107 DESET#		54
107 RESET# 108 VSS		53
109	NO	52
110 111 DE	NO	
111 112 DE PCLK	IOVDE	10
112 GPIO0 113 GPIO1		5 10
114	COREVDE	47
115 GPIO3	VS	5 <u>46</u>
116 117 VSS	NO	44
117 VSS 118 SI		2 43
119 SO	IOVDI VS3	42
I15 GPI02 115 GPI03 116 VSS 117 VSS 118 SI 119 SO 120 SCLK 121 CS# 122 GPI05 123 GPI06 124 GPI07 125 SIOY/OP	COREVDI	41
121 122 CS#	VS	S 40 39
122 GPIO5	CNF	3 20
123 GPIO6 124 GPIO7	CNF: CNF	37
125 SIOVDD	CNF	0 36
126 SIOVDD 127 COREVD 128 COREVD		35
127 COREVD		23
COREVD		
	DACVEE DACVEE DACVCC DACVCC DACVCC DACVCE DACVCE DACVCE DACVCE DACVCC DACVCE DACVE DACV	
	VER CONTROL CO	
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	

Figure 5-2: S1D13746 QFP15 128-pin (Top View)

Note

Pins marked as NC are not used and must be left unconnected.

5.2 Pin Descriptions

Key:

Pin Types		
I	=	Input
0	=	Output
IO	=	Bi-Directional (Input/Output)
Р	=	Power pin
AP	=	Analog power pin
G	=	Ground pin
AG	=	Analog ground pin

RESET# / Power Save Status

Н	=	High level output
L	=	Low level output
Hi-Z	=	High Impedance

Table 5-3 Cell Description

Item Description			
HI	H System ¹ LVCMOS ³ Input Buffer with Fail Safe		
HIS	H System LVCMOS Schmitt Input Buffer with Fail Safe		
HID	H System LVCMOS Input Buffer with pull-down resistor and Fail Safe		
НО	H System LVCOMOS Output buffer with Fail Safe		
HB	H System LVCMOS Bidirectional Buffer with Fail Safe		
HBD	H System LVCMOS Bidirectional Buffer with pull-down resistor and Fail Safe		
LIDS	L System ² LVCMOS Schmitt Input Buffer with pull-down resistor		
LITR	L System Transparent Input Buffer		
LOTR	L System Transparent Output Buffer		
AIO	Analog		

¹ H System is IOVDD and PIOVDD (see Section 7, "D.C. Characteristics" on page 31).
 ² L System is COREVDD (see Section 7, "D.C. Characteristics" on page 31).
 ³ LVCMOS is Low Voltage CMOS (see Section 7, "D.C. Characteristics" on page 31).

5.2.1 Intel 80 Host Interface

Pin Name	Туре	PFBGA Pin #	QFP Pin #	Cell	IO Voltage	RESET# State	Power Save Status	Description
MD[15:0]	Ю	B10, F7, C10, D9, D8, E7, D10, E8, E9, E10, F8, F9, F10, G9, G8, G7	96, 95, 92, 89, 88, 87, 86, 85, 84, 82, 81, 80, 79, 78, 77, 75	НВ	IOVDD	Hi-Z	Hi-Z	 This pin has multiple functions. For the Intel 80 Interface these pins are the data lines MD[15:0], see Section 6.1, "Intel 80 Data Pins" on page 30. For the Parallel RGB Interface these pins are the input data bits VD[17:2], see Section 6.2, "Parallel RGB Data Pins" on page 30
WE#	I	C8	101	Н	IOVDD			 This pin has multiple functions. For the Intel 80 Interface this input pin is the Write Enable signal (WE#) For the Parallel RGB Interface this input pin is the data bit 1 (VD1)
RD#	I	E6	102	Н	IOVDD	_	_	 This pin has multiple functions. For the Intel 80 Interface this input pin is the Read Enable signal For the Parallel RGB Interface this input pin is the data bit 0 (VD0)
CS#	I	B4	121	Н	SIOVDD	_	_	This input pin is the Chip Select signal for both the Intel 80 Host Interface as well as the Serial Interface.
D/C#	I	B8	104	н	IOVDD	_	_	 This pin has multiple functions. For the Intel 80 Interface this input pin selects between address and data (D/C#) For the Parallel RGB Interface this input pin is the Horizontal Sync (HS)
TE	Ю	В7	105	HB	IOVDD	L	L	 This pin has multiple functions. For the Intel 80 Interface this pin is Tearing Effect. This pin reflects the VSYNC status of the display and can be used to indicate when it is safe to write new data from the Host in order to prevent visual tearing of an image. For the Parallel RGB Interface this input pin is the Vertical Sync (VS)
PCLK	I	Α7	111	HIS	IOVDD	_		This input pin is the Parallel RGB Interface PCLK input. If the Parallel RGB Interface is not used (CNF[1:0] = 01b or 11b) this pin should be connected to VSS.
DE	I	A8	110	Н	IOVDD		_	This input pin is the Parallel RGB Interface DE input. If the Parallel RGB Interface is not used (CNF[1:0] = 01b or 11b) this pin should be connected to VSS.

Table 5-2: Host Interface Pin Descriptions

Pin Name	Туре	PFBGA Pin #	QFP Pin #	Cell	IO Voltage	RESET# State	Power Save Status	Description
GPIO_INT	0	C6	106	НО	IOVDD	L	L	This pin is the interrupt output associated with GPIO pins when they are configured as inputs. When a GPIO interrupt occurs, this output pin is driven high. For details see the register descriptions for REG[F0h] ~ REG[FAh], in Section 11.3.9, "General Purpose IO Pins Registers" on page 117
RESET#	I	D6	107	HIS	IOVDD	_	_	This active low input sets all internal registers to the default state and forces all signals to their inactive states.

<i>Table 5-2:</i>	Host Interface	Pin Descriptions	(Continued)
-------------------	----------------	------------------	-------------

5.2.2 Serial Peripheral Interface (SPI)

Pin Name	Туре	PFBGA Pin #	QFP Pin #	Cell	IO Voltage	RESET# State	Power Save Status	Description
SO	Ю	A4	119	HB	SIOVDD	Hi-Z	Hi-Z	This pin is the Serial Output. If the serial interface is not used (CNF[1:0] = 01b or 11b), this pin should be connected to either SIOVDD or VSS through a resistor.
SI	I	A5	118	НІ	SIOVDD	_	_	This pin is the Serial Input. If the serial interface is not used (CNF[1:0] = 01b or 11b), this pin should be connected to VSS.
SCLK	I	A3	120	HIS	SIOVDD	_	_	This pin is the Serial Clock. If the serial interface is not used (CNF[1:0] = 01b or 11b), this pin should be connected to VSS.

Table 5-3: SPI Pin Descriptions

5.2.3 TV Interface

Note

If unused, these pins should be left unconnected.

Pin Name	Туре	PFBGA Pin #	QFP Pin #	Cell	IO Voltage	RESET# State	Power Save Status	Description
AOUT, BOUT	0	H1, E1	28, 18	AIO	DAC	_	_	These are the TV analog output pins. The TV outputs are designed to drive a double terminated 75z load (37.5 ohms). For further details, see Section 24.1, "DAC External Components" on page 184. When using Composite Video, AOUT is used and BOUT is left unconnected. When using S-Video, AOUT is the luminance
VREF	Ю	G2	23	AIO	DAC			signal and BOUT is the chrominance signal. This input/output pin is the reference voltage for the DAC. The VREF Enable bit (REG[9Eh] bit 0) is used to determine whether external or internal VREF mode is selected. When REG[9Eh] bit 0 = 0b, external VREF mode is selected and 1.23 volts should be applied to this pin. When REG[9Eh] bit 0 = 1b, internal VREF mode is selected and this pin can be used during testing to confirm the output level is 1.23V. However, for normal operations, this pin should be left unconnected.
VADJ	ю	F2	22	AIO	DAC			This input/output is the reference current generation pin for the DAC. Connect a 2.06kz resistor (Rset) between VADJ and DACVEE. For further details, see Section 24.1, "DAC External Components" on page 184. When the IREF Enable bit = 0b (REG[9Eh] bit 1 = 0b), the internal generation of the reference current is disabled, and VADJ does not control reference current. There should be no problems with leaving the resistor connected.

Table 5-4: TV Interface	Pin Descriptions
-------------------------	------------------

5.2.4 Clocks

Note

For details on the clock structure, see Section 9, "Clocks" on page 59.

Pin Name	Туре	PFBGA Pin #	QFP Pin #	Cell	IO Voltage	RESET# State	Power Save Status	Description
CLKI	I	J10	68	HIS	IOVDD	—	_	This pin is the clock input when $CNF2 = 0$. When $CNF2 = 1$, this pin should be connected to VSS.
CLKOUT	0	H10	71	НО	IOVDD	Note 1	Note 1	This pin outputs the clock signal from either the CLKI pin or the OSCx pins, when enabled by the CLKOUTEN pin (see Section 9.1, "Clock Block Diagram" on page 59 for further information). When disabled, the output on this pin is low.
								Note: This output pin is not affected by the various power save modes.
CLKOUTEN	I	H9	70	н	IOVDD	—	_	This input pin enables/disables the CLKOUT pin. When CLKOUTEN = 0, CLKOUT is disabled. When CLKOUTEN = 1, CLKOUT is enabled.
OSCO	0	K7	58	LOTR	OSCVDD	Note 2	Note 2	This output pin, along with OSCI, forms the 2-terminal crystal interface when $CNF2 = 1$.
0300	0	N/	50	LOTK	030000	Note 2	NOLE 2	When the Internal Oscillator is not used or CNF2 = 0, This pin should be left unconnected.
								This input pin, along with OSCO, forms the 2-terminal crystal interface when CNF2 = 1.
OSCI	I	K6	54	LITR	OSCVDD	—	_	When the Internal Oscillator is not used or CNF2 = 0, This pin should be connected to OSCVDD or left unconnected.

<i>Table 5-5:</i>	Clock	Input Pin	Descrip	tions
10000000	Crock.		Deservp	110110

Note

- 1. When CLKOUTEN = 1, this pin outputs CLKI (CNF2 = 1) or OSCI (CNF2 = 0). When CLKOUTEN = 0, this pin is L.
- 2. When CNF2=1, this pin is active. When CNF2=0, this pin is H.

5.2.5 Miscellaneous

Pin Name	Туре	PFBGA Pin #	QFP Pin #	Cell	IO Voltage	RESET# State	Power Save Status	Description
CNF[3:0]	I	G5, G6, F5, E5	39, 38, 37, 36	н	IOVDD	_	_	These inputs are used for power-on configuration. For details, see Section 5.3, "Summary of Configuration Options" on page 29.
		,	01,00					Note: These pins must be connected directly to IO V_{DD} or V_{SS} .
TESTEN	Ι	B2	4	LIDS	IOVDD	0	_	This pin is the Test Enable input and is used for production test only. This pin should be left unconnected for normal operations.
GPIO[7:5]	Ю	B3, C3, C4	124, 123, 122	HBD	SIOVDD	0	active	These pins are General Purpose IO pins. These pins have internal pull-down resistors which can be controlled using REG[FAh].
GPIO[4:0]	Ю	C7, D5, C5, B5, B6	103, 115, 114, 113, 112	HBD	IOVDD	0	active	These pins are General Purpose IO pins. These pins have internal pull-down resistors which can be controlled using REG[FAh].
PWRSVE	I	B1	1	НІ	IOVDD	_	_	This input pin enables/disables the selected Power Save Mode (Sleep or Standby). REG[2Eh] bit 7 allows the state of this pin to be ORed with either the Sleep Mode Enable bit (REG[2Eh] bit 1) or the Standby Mode Enable bit (REG[2Eh] bit 0).
								Note: This pin must be driven by an external source or terminated to VSS so that it is not floating.
TEST[2:0]	Ι	D3, E4, C2	9, 8, 7	HID	IOVDD	—	_	These input pins are for production test only and should be left unconnected for normal operations.
SCANEN	Ι	C1	10	HID	IOVDD	_	_	This pin is the Scan Enable input and is used for production test only. This pin should be left unconnected for normal operations.
VCP	I	J8	63	LITR	PLLVDD	—	_	This input pin is for production test only and should be left unconnected for normal operations.

Table 5-6: Miscellaneous Pin Descriptions

5.2.6 Power And Ground

Pin Name	Туре	PFBGA Pin #	QFP Pin #	Cell	Description
COREVDD	Ρ	A2, B9, G10, J5	2, 3, 41, 47, 73, 74, 93, 99, 100, 127, 128	Ρ	Core power supply
IOVDD	Ρ	D7, F6, H6, H8, J4	6, 43, 50, 61, 69, 83, 90, 97, 98	Ρ	IO power supply for the host interface
SIOVDD	Р	D4	125, 126	Р	IO power supply for the serial interface
VSS	G	A6, A9, C9, F4, G4, H4, H5, H7, J9, K4, K5	5, 40, 42, 46, 49, 66, 67, 91, 94, 108, 109, 116, 117	Ρ	GND
OSCVDD	Р	J7	60	Р	IO power supply for the Oscillator (2.5v)
OSCVSS	Р	J6	56	Р	GND for the Oscillator
PLLVDD	AP	K8	62	Р	PLL Power Supply
PLLVSS	AG	K9	64	Р	GND for PLL
DACVCC	AP	D2, E2, F3, H2, H3, J3	14, 16, 20, 24, 26, 30	Р	DAC Analog Power Supply
DACVEE	AG	D1, E3, F1, G1, G3, J1, J2, K3	15, 17, 19, 21, 25, 27, 29, 32	Р	GND for DAC Analog

Table 5-7: Power And Ground Pin Descriptions

5.3 Summary of Configuration Options

These pins are used for power-up configuration and must be connected directly to IOV_{DD} or V_{SS} . The status of these pins can be read in REG[02h] using the CNF[3:0] Status bits.

			, , , , , , , , , , , , , , , , , , ,						
Configuration	Power-On/Reset State								
Input	1	(connect	ted to IOV _{DD})	0 (Connected to V _{SS})					
CNF[1:0]	Select Host In CNF1 0 0 1 1	terface as CNF0 0 1 0 1	Host Bus	ce with Parallel RGB Interface arallel RGB Interface					
CNF2		Terminal Crystal used as input clock SCI, OSCO pins)		Oscillator used as input clock (CLKI pin)					
CNF3	Reset Filter =	5 ps (cloo	ck must be present)	Reset Filter = 43 ns (no clock needed)					

Table 5-8: Summary of Power-On/Reset Options

Note

When CNF1 = 0, all register accesses are 8-bit only.

When CNF1 = 1 (16-bit), all register accesses are 8-bit ONLY (most significant byte on the data bus is ignored) except to the Display Memory Data Port (REG[A0h]. Access to the Display Memory Data Port is 16-bit.

6 Pin Mapping

6.1 Intel 80 Data Pins

Intel 80 data pin mapping is controlled by CNF[1:0]. For details on CNF[1:0], see Section 5.3, "Summary of Configuration Options" on page 29.

Pin Name	16-Bit Data CNF[1:0] = 11b	8-Bit Data CNF[1:0] = 01b
MD15	MD15	
MD14	MD14	
MD13	MD13	Connect to
MD12	MD12	ground through
MD11	MD11	pull-down resistors
MD10	MD10	(eight used)
MD9	MD9	
MD8	MD8	

Pin Name	16-Bit Data CNF[1:0] = 11b	8-Bit Data CNF[1:0] = 01b
MD7	MD7	MD7
MD6	MD6	MD6
MD5	MD5	MD5
MD4	MD4	MD4
MD3	MD3	MD3
MD2	MD2	MD2
MD1	MD1	MD1
MD0	MD0	MD0

Table 6-1: Intel 80 Data Pin Mapping

6.2 Parallel RGB Data Pins

S1D13746 Pin Name	RGB Pin Name	RGB Function		S1D13746 Pin Name	RGB Pin Name	RGB Function
MD15	VD17	R5		MD4	VD6	G0
MD14	VD16	R4		MD3	VD5	B5
MD13	VD15	R3		MD2	VD4	B4
MD12	VD14	R2		MD1	VD3	B3
MD11	VD13	R1		MD0	VD2	B2
MD10	VD12	R0		WE#	VD1	B1
MD9	VD11	G5		RD#	VD0	B0
MD8	VD10	G4		D/C#	HS	HS
MD7	VD9	G3		TE	VS	VS
MD6	VD8	G2]	DE	DE	DE
MD5	VD7	G1		PCLK	PCLK	PCLK

Table 6-2: Parallel RGB Data Pin Mapping

7 D.C. Characteristics

7.1 Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
COREVDD	Core Supply Voltage	- 0.3 ~ 2.0	V
PLLVDD	PLL Supply Voltage	- 0.3 ~ 2.0	V
IOVDD	Host IO Supply Voltage	COREVDD ~ 4.0	V
SIOVDD	Serial IO Supply Voltage	COREVDD ~ 4.0	V
OSCVDD	Crystal Oscillator Supply Voltage	COREVDD ~ 4.0	V
DACVCC	DAC Analog Supply Voltage	COREVDD ~ 4.0	V
V _{IN}	Input Voltage	- 0.3 ~ IOVDD + 0.5	V
V _{IN_F}	Input Voltage (Fail Safe I/O)	- 0.3 ~ 4.0	V
V _{OUT}	Output Voltage	- 0.3 ~ IOVDD + 0.5	V
I _{OUT_IO}	Digital Output Current	±10	mA
I _{OUT_DAC}	DAC Output Current	±50	mA
T _{STG}	Storage Temperature	-65 ~ 150	°C

Table 7-1: Absolute Maximum Ratings

7.2 Recommended Operating Conditions

The following characteristics are for: VSS = PLLVSS = OSCVSS = DACVEE = 0V

Symbol	Parameter	Min	Тур	Max	Units
COREVDD	Core Supply Voltage	1.35	1.50	1.65	V
PLLVDD	PLL Supply Voltage	1.35	1.50	1.00	v
IOVDD	Host IO Supply Voltage	1.62	—	3.60	V
SIOVDD	Serial IO Supply Voltage	1.62	—	3.60	V
OSCVDD	Crystal Oscillator Supply Voltage	1.62	—	3.60	V
DACVCC	DAC Analog Supply Voltage	2.70	3.00	3.30	V
V _{IN}	Input Voltage	0	—	IOVDD	V
V _{IN_F}	Input Voltage (Fail Safe I/O)	0	—	3.90	V
T _{OPR}	Operating Temperature	-40	25	85	°C

Table 7-2: Recommended Operating Condition

7.3 Electrical Characteristics

The following characteristics are for the Recommended Operation Conditions.

<i>Table 7-3: Electrical Characteristics IOVDD or SIOVDD or OSCVDD = 1.62V to 3.60V, VSS=0V</i>

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I _{IZ}	Input Leakage Current	—	-1	_	1	рA
I _{OZ}	Off State Leakage Current	—	-1	_	1	рA
IOV _{OH}	High Level Output Voltage	IOVDD = Min. IOH = -1.8mA	IOVDD - 0.4	_	—	V
IOV _{OL}	Low Level Output Voltage	IOVDD = Min. IOL = 1.8mA	_	_	0.4	V
V _{IH}	High Level Input Voltage	LVCMOS Level	IOVDD x 0.7	—	IOVDD + 0.3	V
V _{IL}	Low Level Input Voltage	LVCMOS Level	-0.3	—	IOVDD x 0.3	V
V _{T+}	Positive Trigger Voltage	LVCMOS Schmitt	IOVDD x 0.4	_	IOVDD x 0.7	V
V _{T-}	Negative Trigger Voltage	LVCMOS Schmitt	IOVDD x 0.25	_	IOVDD x 0.55	V
GV	Hysteresis Voltage	LVCMOS Schmitt	IOVDD x 0.1	_	—	V
R _{PD}	Pull-down Resistance	VI = IOVDD	20	—	244	kΖ
C _{IO}	Pin Capacitance	f = 1MHz, IOVDD = 0V	_	_	8	pF

Table 7-4: Power Consumption

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I _{QHVDD}	IO, OSC Quiescent Current	_	—	1	—	pА
I _{QLVDD}	Core, PLL Quiescent Current	_	—	20	—	рA
I _{QDAC}	DAC Quiescent Current	_	—	1	—	pА
I _{IO}	IOVDD Operation Current	_		_	5	mA
losc	OSCVDD Operation Current	27MHz Crystal		600	—	pА
I _{CORE}	COREVDD Operation Current	_	—	—	33	mA
I _{PLL}	PLLVDD Operation Current	f = 54MHz		0.8	2.0	mA
lava	DACVCC Operation Current	S-Video	—	90	100	mA
DAC	DAGVOC Operation Current	Composite	—	45	50	mA

7.4 DAC Characteristics

The following characteristics are for: DACVCC = 2.7V to 3.3V, VSS = PLLVSS = OSCVSS = DACVEE = 0V, T_{OPR} = -40 to 85 °C, R_L = 37.5z, C_L = 30pF, R_{ADJ} = 2060z, VREF = Open.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
	Resolution	—	—	10	—	bits
	Sample Rate	—	—	27	—	MHz
	Clock Duty Cycle	—	40	50	60	%
	Minimum Output Voltage	Zero Scale	-0.05	0	0.05	V
	Maximum Output Voltage	Full Scale	1.17	1.30	1.43	V
	Differential Nonlinearity	—	-1		1	LSB
	Integral Nonlinearity	—	-3	—	3	LSB

Table 7-5.	DAC	<i>Characteristics</i>
10000 / 00		Cherrene contention to the s

Note

If the TV outputs from AOUT or BOUT are not connected to a double termination of 75 ohms (i.e. the 75 ohm load resistor and an external 75 ohm load) but only single terminated with a single 75 ohm load, the output voltage level is double.

7.5 Power Estimation Guidelines

The following information summarizes the power estimation guidelines for each of the three possible modes: Active, Standby Mode, and Sleep Mode.

These guidelines are based on CLKI/OSC = 27 MHz, SYSCLK = 54 MHz, and results will vary based on user environment.

Active Display (Note 1)	Current Consumption	Comments
Core (1.5V)	15mA / 20mA	Intel 80 Host / Parallel RGB Host
PLL (1.5V)	528uA	—
DAC(3.0V)	48mA	Composite video output (REG[40h] bit 4 = 0b)
DAC(3.0V)	92mA	S-Video output (REG[40h] bit 4 = 1b)
OSCVDD(1.8V)	565uA	if used, otherwise zero
IOVDD(1.8V) ⁴	80uA / 900uA	Host Activity / CLKOUT enabled
SIOVDD(1.8V) ⁴	15uA	Serial host register accesses

Table 7-6: Typical Power Consumption

Standby Mode Enabled (Note 2)	Current Consumption	Comments
Core (1.5V)	820uA	—
PLL (1.5V)	528uA	—
DAC(3.0V)	0	—
OSCVDD(1.8V)	565uA	if used, otherwise zero

Sleep Mode Enabled (Note 3)	Current Consumption	Comments
Core (1.5V)	330uA / 15 uA	CLKI Active / CLKI Grounded
PLL (1.5V)	0	—
DAC(3.0V)	0	—
OSCVDD(1.8V)	565uA	if used, otherwise zero

Note

- 1. Active Display Mode is when the PWRSVE pin is low **and** both the Sleep Mode Enable bit (REG[2Eh] bit 1) and Standby Mode Enable bit (REG[2Eh] bit 0) = 0b.
- 2. Standby Mode is when the Standby Mode Enable bit = 1b (REG[2Eh] bit 0 = 1b) or the PWRSVE pin is high when the PWRSVE Input Pin Function is configured for Standby Mode (REG[2Eh] bit 7 = 1b).
- 3. Sleep Mode is when the Sleep Mode Enable bit = 1b (REG[2Eh] bit 1 = 1b) or the PWRSVE pin is high when the PWRSVE Input Pin Function is configured for Sleep Mode (REG[2Eh] bit 7 = 0b).
- 4. IOVDD/SIOVDD depends on activity on the Intel 80 host interface, Serial Host Interface, or GPIOs and are not affected by Standby or Sleep Mode.

S1D13746

X74B-A-001-02

Page 35

8 A.C. Characteristics

Conditions:

$$\begin{split} IOVDD &= 1.62V \text{ to } 3.60V \\ T_{OPR} &= -40 \cdot C \text{ to } 85 \cdot C \\ T_{rise} \text{ and } T_{fall} \text{ for all inputs except Schmitt and CLKI must be} &\leq 50 \text{ ns } (10\% \sim 90\%) \\ T_{rise} \text{ and } T_{fall} \text{ for all Schmitt must be} &\leq 5 \text{ ms } (10\% \sim 90\%) \\ C_L &= 8pF \sim 30pF \text{ (MD[15:0])} \\ C_L &= 15pF \text{ (TE, GPIO_INT, CLKOUT)} \\ C_L &= 30pF \text{ (GPIO Interface)} \end{split}$$

8.1 Clock Timing

8.1.1 Input Clocks

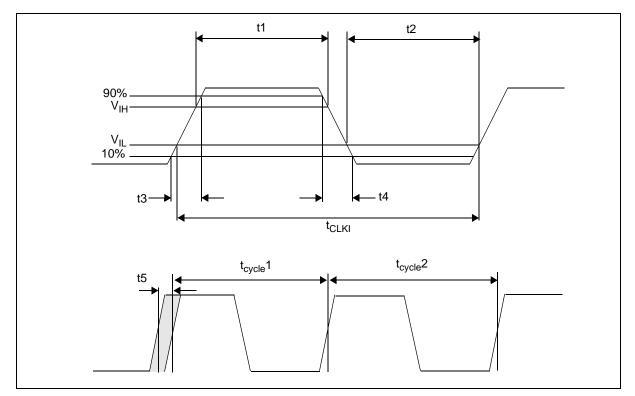


Figure 8-1 Clock Input Required (PLL)

Symbol	Parameter	Min	Тур	Max	Units
f _{CLKI}	Input clock frequency	18	27	27	MHz
t _{CLKI}	Input clock period	—	1/f _{CLKI}	_	p S
t1	Input clock pulse width high	0.45	_	0.55	t _{CLKI}
t2	Input clock pulse width low	0.45	_	0.55 t _{CLKI}	
t3	Input clock rise time (10% - 90%)	—	_	5	ns
t4	Input clock fall time (90% - 10%)		_	5	ns
t5	Input clock period jitter (see notes 2 and 4)		_	300	ps
t6	Input clock cycle jitter, NTSC TV output (see notes 3 and 4)	-50	_	50	ppm
(see note 1)	Input clock cycle jitter, PAL TV output (see notes 3 and 4)	-25	—	25	ppm

1. $t6 = t_{cycle1} - t_{cycle2}$

- 2. The input clock period jitter is the displacement relative to the center period (reciprocal of the center frequency).
- 3. The input clock cycle jitter is the difference in period between adjacent cycles.
- 4. The jitter characteristics must satisfy both the t5 and t6 characteristics

8.1.2 OSC Clock

<i>Table</i> 8-2:	OSC	Crystal	Clock	Requireme	ents (OSC)	1

Symbol	Parameter		Тур	Max	Units
f _{OSC}	OSC Crystal clock frequency	18	27	27	MHz
t _{OSC}	OSC Crystal clock period		1/f _{OSCI}	_	p s

8.1.3 PLL Clock

The PLL circuit is an analog circuit and is very sensitive to noise on the input clock waveform or the power supply. Noise on the clock or the supplied power may cause the operation of the PLL circuit to become unstable or increase the jitter.

Due to these noise constraints, it is highly recommended that the power supply traces or the power plane for the PLL be isolated from those of other power supplies. Filtering should also be used to keep the power as clean as possible. The jitter of the input clock waveform should be as small as possible.

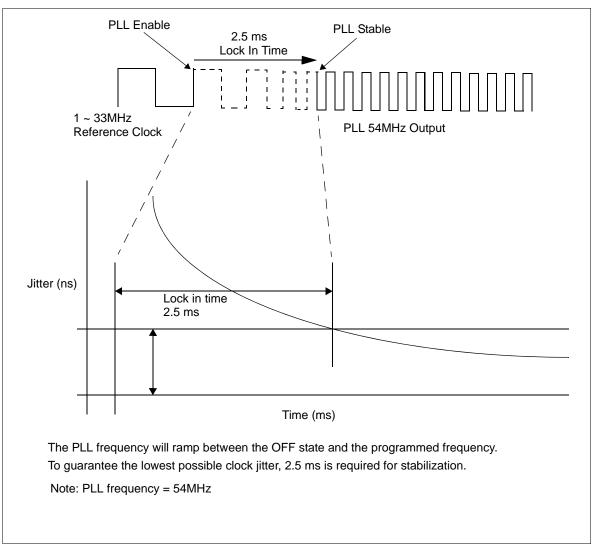
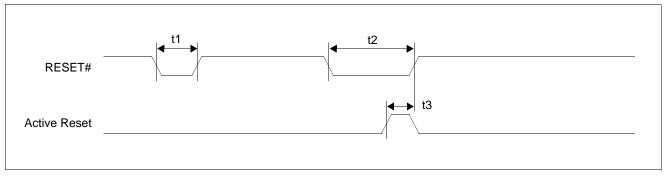
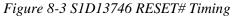




Figure 8-2: PLL Start-Up Time

Symbol	Parameter	Min	Тур	Max	Units
f _{PLLI}	PLL input clock frequency after M-Divider	1	_	2	MHz
f _{PLLI2}	PLL input clock frequency before M-Divider	1	_	33	MHz
f _{PLLO}	PLL output clock frequency	—	54		MHz
t _{PJref}	PLL output clock period jitter	-3	_	3	%
t _{PDuty}	PLL output clock duty cycle	30	_	70	%
t _{PStal}	PLL output stable time	_		2.5	ms

8.2 RESET# Timing

CNF3	Symbol	Parameter		Max (note 2)	Units
0	t1	Reset Pulse Width to be ignored when 5_{ps} Reset Filter is disabled	_	43	ns
0	t2	Active Reset Pulse Width when 5ps Reset Filter is disabled	150	-	ns
1	t1	Reset Pulse Width to be ignored when 5_{ps} Reset Filter is enabled	-	5.01	p s
1	t2	Active Reset Pulse Width when 5ps Reset Filter is enabled	5.20	-	p s
	t3	t2 - t1	-	-	-

Table 8-4 S1D13746 RESET# Timing

- 1. Min numbers are based on the minimum recommended operating conditions (see Section 7.2, "Recommended Operating Conditions" on page 31)
- 2. Max numbers are based on the maximum recommended operating conditions (see Section 7.2, "Recommended Operating Conditions" on page 31)

Note

The 5ps Reset Filter requires CLKI and timing is based on a CLKI frequency of 27MHz.

8.3 Host interface Timing

8.3.1 Intel 80 Interface Timing

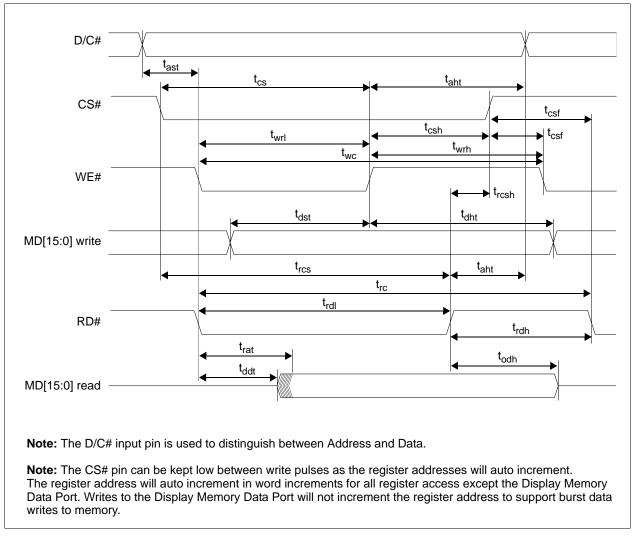


Figure 8-4: Intel 80 Input A.C. Characteristics

Signal	Symbol	Parameter	Min	Max	Unit	Description
D/C#	t _{ast}	Address setup time	3.0	—	ns	
D/C#	t _{aht}	Address hold time	1.0	—	ns	
	t _{cs}	Chip Select setup time (write)	2.0 + t _{wrl}	—	ns	
	t _{rcs}	Chip Select setup time (read)	1.0 + t _{rdl}	—	ns	
CS#	t _{csf}	Chip Select Wait time	10.0	—	ns	
	t _{csh}	Chip select hold time (write)	0	—	ns	
	t _{rcsh}	Chip select hold time (read)	0	—	ns	
	t _{wc}	Write cycle (falling edge to next falling edge)	2SYSCLK	—	ns	
WE#	t _{wrh}	Pulse high duration	Note 1	—	ns	
	t _{wrl}	Pulse low duration	1.0	—	ns	
	t _{rc}	Read cycle for Registers	28.0	—	ns	
RD#	t _{rdh}	Pulse high duration	4.0	—	ns	
	t _{rdl}	Pulse low duration for Registers	24.0	—	ns	
	t _{dst}	Data setup time	4.0	—	ns	
	t _{dht}	Data hold time	3.0	—	ns	
MD[15:0]	t _{rat} (See note)	Read falling edge to Data valid for Registers	5.5	22.5	ns	For maximum CL=30pF
	t _{odh} (See note)	Read hold time	11.0	36.5	ns	For minimum CL=8pF
	t _{ddt} (See note)	Read falling edge to Data driven	4.0	19.0	ns	

Table 8-5: Intel 80 Input A.C. Characteristic	<i>2S</i>
---	-----------

1. t_{wrh} min = long enough to satisfy t_{wc}

Note

Definition of transition time to Hi-Z state.

Due to the difficulty of Hi-Z impedance measurement for high speed signals, transition time from H/L to Hi-Z specified as follows.

H to Hi-Z delay time: t_{pHZ} , delay time when a gate voltage of final stage of the Pch-MOSFET turns to 0.8 x IOVDD (Pch-MOSFET is off). Total delay time to Hi-Z is calculated as following equation;

Internal logic delay + t_{pHZ} (from H to Hi-Z)

L to Hi-Z delay time: t_{pLZ} , delay time when a gate voltage of final stage of the Nch-MOSFET turns to 0.2 x IOVDD (Nch-MOSFET is off). Total delay time to Hi-Z is calculated as following equation;

Internal logic delay + t_{pHZ} (from H to Hi-Z)

The functional model of a final stage of the Tri state Output Cell is shown in Figure 8-5: "Definition of Transition Time to Hi-Z State".

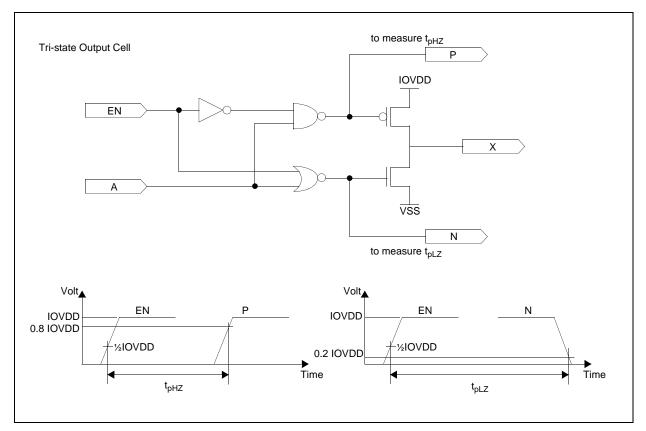


Figure 8-5: Definition of Transition Time to Hi-Z State

8.4 Serial Interface Timing

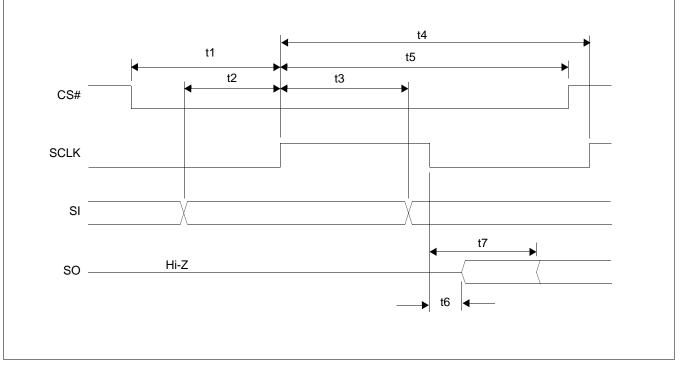
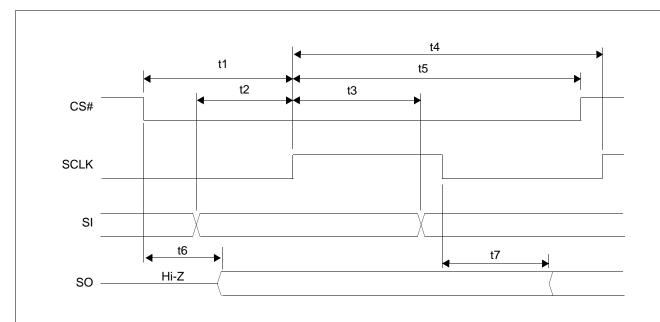



Figure 8-6: 3-Wire Serial Interface Timing

Table 8-6:	3-Wire	Serial	Interface	Timino
<i>Tuble</i> 0-0.	5-1116	senui	merjace	runung

Symbol	Parameter	Min	Max	Units
t1	CS# Active to positive edge of SCLK	10	—	ns
t2	SI Setup to positive edge of SCLK	6	—	ns
t3	SI Hold from positive edge of SCLK	8	—	ns
t4	SCLK Period	150	—	ns
t5	Positive edge of SCLK to CS# High	1	—	SCLK
t6	Negative edge of SCLK to SO driven, not Hi-Z	—	22	ns
t7	Negative edge of SCLK to SO Valid Data	—	25	ns

8.4.2 4-Wire Serial Interface (SPI) Timing

Figure 8-7: 4-Wire Serial Interface (SPI) Timing

Symbol	Parameter	Min	Max	Units
t1	CS# Active to positive edge of SCLK	10	_	ns
t2	SI Setup to positive edge of SCLK	6	_	ns
t3	SI Hold from positive edge of SCLK	8		ns
t4	SCLK Period	100	_	ns
t5	Positive edge of SCLK to CS# high	1		SCLK
t6	CS# low to SO driven, not Hi-Z	—	20	ns
t7	Negative edge of SCLK to SO Valid Data	—	25	ns

8.5 Parallel RGB Interface Timing

8.5.1 Vertical Timing

Figure 8-8: Parallel RGB Interface Vertical Timing

Symbol	Parameter	Min	Max	Units
t1	Vertical Sync Period	2		Lines
t2	Vertical Back Porch	2	_	Lines
t3	Vertical Active Frame Period	16	1024	Lines
t4	Vertical Front Porch	2		Lines

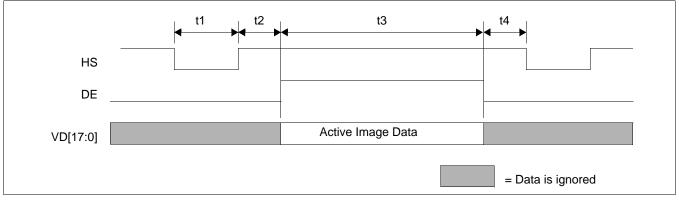


Figure 8-9: Parallel RGB Interface Horizontal Timing

Table 8-9: Parallel RGB Interface	Horizontal Timing
-----------------------------------	-------------------

Symbol	Parameter	Min	Max	Units
t1	Horizontal Sync Period	2	—	PCLK
t2	Horizontal Back Porch	2	_	PCLK
t3	Horizontal Active Line Period	16	1024	PCLK
t4	Horizontal Front Porch	2	—	PCLK

8.5.3 Input Signal Timings Relative to PCLK

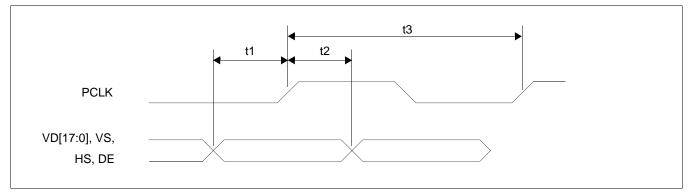


Figure 8-10: Input Signal Timings Relative to PCLK

Symbol	Parameter	Min	Max	Units
t1	VD[17:0], VS, HS, and DE Setup Time	5	_	ns
t2	VD[17:0], VS, HS, and DE Hold Time	8	_	ns
t3	PCLK Period	25	_	ns

8.6 TV Timing

8.6.1 TV Output Timing

The overall PAL and NTSC video timing is shown in Figure 8-11: and Figure 8-12: respectively.

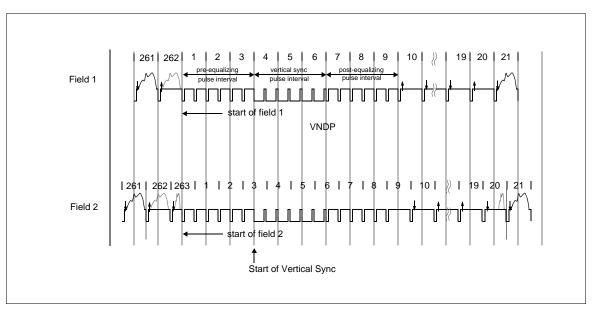


Figure 8-11: NTSC Video Timing

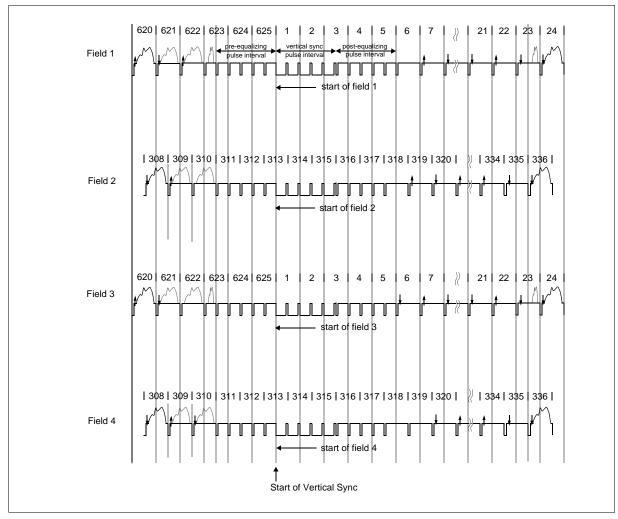


Figure 8-12: PAL Video Timing

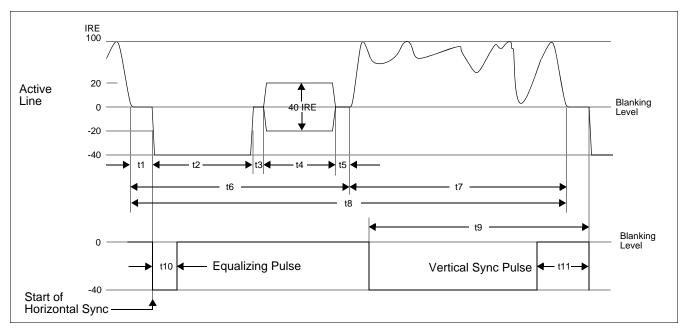


Figure 8-13: Horizontal Timing for NTSC/PAL

Symbol	Parameter	NTSC M/J (525 Lines)	PAL B/D/G/H/I/N (625 Lines)	PAL Nc (625 Lines)	PAL M (525 Lines)	Units
t1	Front Porch (note 1)	0.96	0.96	0.96	0.96	p s
t2	Horizontal Sync	4.7	4.7	4.7	4.7	p s
t3	Breezeway	0.85	0.9	0.9	1.12	p s
t4	Color Burst	2.52	2.26	2.52	2.52	p s
t5	Color Back Porch (note 2)	1.19	1.85	1.59	0.96	p s
t6	Horizontal Blanking	10.222	10.667	10.667	10.222	p s
t7	Active Video	53.333	53.333	53.333	53.333	p s
t8	Line Period	63.555	64	64	64	p s
t9	Half Line Period	31.7777	32	32	32	p s
t10	Equalizing Pulse	2.3	2.35	2.35	2.35	p s
t11	Vertical Serration	4.66	4.66	4.66	4.66	p s

Table 8-11: Horizontal Timing for NTSC/PAL

Note

The values in this table are measured when REG[9Eh] bits 6-4 are set to 000b (default).

1. t1 = 0.074 x (13 REG[9Eh] bits 6-4) ps (the is controlled by REG[9Eh] bit 7)

- 2. t5 = 2.15 ps t1 for NTSC M/J
 - = 2.81ps t1 for PAL B/D/G/H/I/N
 - = 2.55ps t1 for PAL Nc
 - = 1.92ps t1 for PAL M

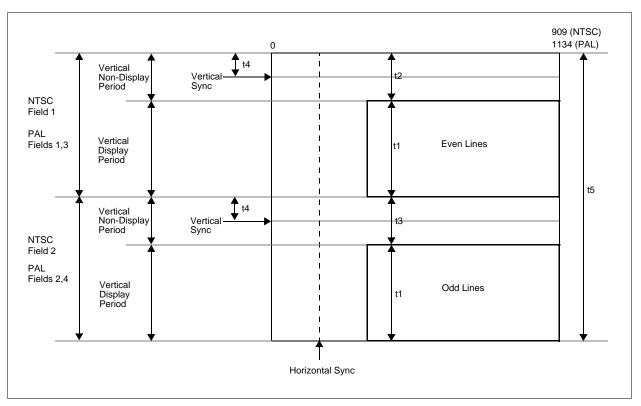


Figure 8-14: Vertical Timing for NTSC/PAL

		85		
Symbol	Parameter	NTSC M/J, PAL M	PAL B/D/G/H/I/N/Nc	Units
T _{LINE}	Line Period	63.5555	64	p s
t1	Vertical Field Period	240	288	T _{LINE}
t2	Vertical Even Blanking	22	24	T _{LINE}
t3	Vertical Odd Blanking	23	25	T _{LINE}
t4	Vertical Sync Position (note)	3	3	T _{LINE}

525

Table 8-12: Vertical Timing for NTSC/PAL

Note

Frame Period

The values in this table are measured when REG[9Eh] bits 3-2 are set to 00b (default). t4 = 3 - REG[9Eh] bits 3-2

625

T_{LINE}

t5

8.6.2 TV Output Parameters

All results in this section are for composite video output.

Luminance Non-Linearity

In a TV system, luminance non-linearity is present if luminance gain is affected by luminance level. In the S1D13746, luminance gain is not affected by the luminance level. The luminance non-linearity is only affected by rounding accuracy of the circuit and DAC performance. These numbers are calculated by comparing the amplitudes of the individual steps in the 10-Step Staircase test pattern with the worst case DAC parameters taken into account. The difference between the largest steps and smallest steps, expressed as a percentage of the largest step amplitude, is the amount of luminance non-linearity distortion.

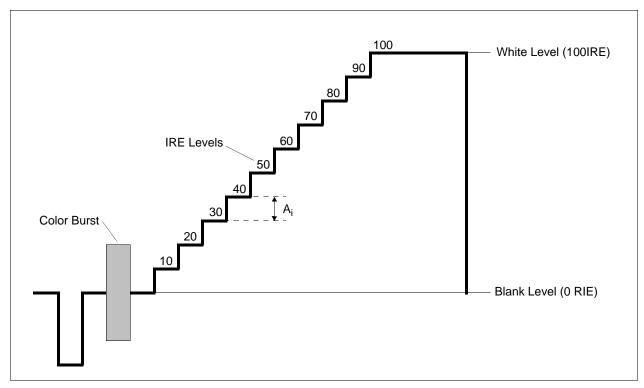


Figure 8-15: Luminance Non-Linearity

Luminance Non-Linearity = $[Max(A_i) - Min(A_i)] & Max(A_i)$ where i = position of step from 1 to 10

			NTSC			
	B,D,G,H,I	Μ	N	Nc	М	J
Typical	7.14%	0.00%	0.00%	7.14%	0.00%	6.67%
Worst Case	41.18%	37.50%	37.50%	41.18%	37.50%	38.89%

Table 8-13: Lumi	inance Non-Lineari	ty (Using 10-	Step Staircase)
------------------	--------------------	---------------	-----------------

These numbers are calculated based on 75% and 100% Color Bar test patterns with the worst case DAC parameters taken into account.

			75% Color Bar (mV)						100% Color Bar (mV)					
				P/	AL .		NT	SC		P/	AL .		NT	SC
			B,D,G, H,I	М	Ν	Nc	М	J	B,D,G, H,I	М	Ν	Nc	М	J
		Max	30.75	30.75	30.75	30.75	30.75	30.75	30.75	30.75	30.75	30.75	30.75	30.75
Sync	Тір	Тур	20.33	20.33	20.33	20.33	20.33	20.33	20.33	20.33	20.33	20.33	20.33	20.33
		Min	11.44	11.44	11.44	11.44	11.44	11.44	11.44	11.44	11.44	11.44	11.44	11.44
		Max	360.65	343.87	343.87	360.65	343.87	343.87	360.65	343.87	343.87	360.65	343.87	343.87
Blank		Тур	320.23	304.99	304.99	320.23	304.99	304.99	320.23	304.99	304.99	320.23	304.99	304.99
		Min	281.35	267.62	267.62	281.35	267.62	267.62	281.35	267.62	267.62	281.35	267.62	267.62
	Llimb	Max	522.80	506.02	506.02	522.80	499.03	499.03	522.80	506.02	506.02	522.80	499.03	499.03
	High Tip	Тур	467.64	452.39	452.39	467.64	446.04	446.04	467.64	452.39	452.39	467.64	446.04	446.04
Color	ΠP	Min	414.02	400.29	400.29	414.02	394.57	394.57	414.02	400.29	400.29	414.02	394.57	394.57
Burst	Low	Max	197.10	180.32	180.32	197.10	187.31	187.31	197.10	180.32	180.32	197.10	187.31	187.31
	Low Tip	Тур	171.55	156.30	156.30	171.55	162.66	162.66	171.55	156.30	156.30	171.55	162.66	162.66
	пр	Min	147.54	133.81	133.81	147.54	139.53	139.53	147.54	133.81	133.81	147.54	139.53	139.53
		Max	936.56	944.95	944.95	936.56	944.95	930.97	1126.67	1129.46	1129.46	1126.67	1129.46	1126.67
Whit	e	Тур	843.79	851.42	851.42	843.79	851.42	838.71	1016.62	1019.16	1019.16	1016.62	1019.16	1016.62
		Min	752.55	759.41	759.41	752.55	759.41	747.98	908.09	910.38	910.38	908.09	910.38	908.09
	Link	Max	1128.06	1123.87	1123.87	1128.06	1123.87	1126.67	1375.48	1365.70	1365.70	1375.48	1365.70	1385.27
	High Tip	Тур	1017.89	1014.08	1014.08	1017.89	1014.08	1016.62	1242.82	1233.92	1233.92	1242.82	1233.92	1251.71
Yellow	ΠÞ	Min	909.24	905.81	905.81	909.24	905.81	908.09	1111.67	1103.67	1103.67	1111.67	1103.67	1119.68
reliow	1	Max	610.86	641.61	641.61	610.86	641.61	599.68	697.53	724.09	724.09	697.53	724.09	687.74
	Low Tip	Тур	547.70	575.66	575.66	547.70	575.66	537.54	626.49	650.64	650.64	626.49	650.64	617.60
	пр	Min	486.07	511.23	511.23	486.07	511.23	476.92	556.98	578.71	578.71	556.98	578.71	548.97
	111	Max	1123.87	1126.67	1125.27	1123.87	1126.67	1123.87	1378.28	1369.89	1369.89	1378.28	1369.89	1385.27
	High Tip	Тур	1014.08	1016.62	1015.35	1014.08	1016.62	1014.08	1245.36	1237.73	1237.73	1245.36	1237.73	1251.71
Curan	пр	Min	905.81	908.09	906.95	905.81	908.09	905.81	1113.96	1107.10	1107.10	1113.96	1107.10	1119.68
Cyan	1	Max	401.18	438.92	438.92	401.18	438.92	378.82	415.16	451.51	451.51	415.16	451.51	396.99
	Low Tip	Тур	357.09	391.40	391.40	357.09	391.40	336.75	369.79	402.83	402.83	369.79	402.83	353.27
	пр	Min	314.52	345.40	345.40	314.52	345.40	296.22	325.95	355.69	355.69	325.95	355.69	311.09
	111	Max	1035.81	1040.00	1040.00	1035.81	1040.00	1031.61	1265.05	1253.87	1253.87	1265.05	1253.87	1260.86
	High	Тур	934.02	937.83	937.83	934.02	937.83	930.21	1142.42	1132.26	1132.26	1142.42	1132.26	1138.61
Crean	Тір	Min	833.75	837.18	837.18	833.75	837.18	830.32	1021.32	1012.17	1012.17	1021.32	1012.17	1017.89
Green	1	Max	355.05	401.18	401.18	355.05	401.18	336.88	360.65	399.78	399.78	360.65	399.78	342.47
	Low Tip	Тур	315.15	357.09	357.09	315.15	357.09	298.63	320.23	355.82	355.82	320.23	355.82	303.71
	ΠÞ	Min	276.77	314.52	314.52	276.77	314.52	261.91	281.35	313.37	313.37	281.35	313.37	266.48
	Link	Max	940.75	944.95	944.95	940.75	944.95	930.97	1125.27	1125.27	1125.27	1125.27	1125.27	1121.08
	High Tip	Тур	847.61	851.42	851.42	847.61	851.42	838.71	1015.35	1015.35	1015.35	1015.35	1015.35	1011.53
Mogente	ιψ	Min	755.98	759.41	759.41	755.98	759.41	747.98	906.95	906.95	906.95	906.95	906.95	903.52
Magenta	1	Max	260.00	306.13	306.13	260.00	306.13	236.24	220.86	271.18	271.18	220.86	271.18	202.69
	Low Tip	Тур	228.74	270.67	270.67	228.74	270.67	207.14	193.16	238.91	238.91	193.16	238.91	176.64
	ιψ	Min	199.00	236.74	236.74	199.00	236.74	179.56	166.98	208.15	208.15	166.98	208.15	152.11
	Llink	Max	894.62	907.20	907.20	894.62	907.20	889.03	1070.75	1072.15	1073.55	1070.75	1073.55	1072.15
	High	Тур	805.67	817.11	817.11	805.67	817.11	800.59	965.79	967.06	968.33	965.79	968.33	967.06
Ded	Тір	Min	718.24	728.53	728.53	718.24	728.53	713.67	862.35	863.49	864.63	862.35	864.63	863.49
кеа	1	Max	171.94	219.46	220.86	171.94	220.86	143.98	107.63	155.16	155.16	107.63	155.16	83.87
		Тур	148.68	191.89	193.16	148.68	193.16	123.26	90.22	133.43	133.43	90.22	133.43	68.62
	пр	Min	126.95	165.84	166.98	126.95	166.98	104.08	74.34	113.23	113.23	74.34	113.23	54.90
Red	Low Tip	Тур	148.68	191.89	193.16	148.68	193.16	123.26	90.22	133.43	133.43	90.22	133.43	

Table 8-14: 75% and 100% Color Bar Levels

				-	75% Colo	r Bar (mV)		100% Color Bar (mV)						
			PAL				NT	NTSC PAL					NTSC		
			B,D,G, H,I	М	Ν	Nc	М	J	B,D,G, H,I	М	Ν	Nc	М	J	
	Lliab	Max	684.95	704.52	704.52	684.95	704.52	673.76	792.58	806.56	806.56	792.58	806.56	781.40	
	High Tip	Тур	615.05	632.84	632.84	615.05	632.84	604.89	712.90	725.61	725.61	712.90	725.61	702.74	
Blue		Min	546.69	562.70	562.70	546.69	562.70	537.54	634.75	646.19	646.19	634.75	646.19	625.60	
Diue	Low	Max	169.14	222.26	222.26	169.14	222.26	146.77	106.24	164.95	164.95	106.24	164.95	83.87	
	Low Tip	Тур	146.14	194.43	194.43	146.14	194.43	125.81	88.95	142.33	142.33	88.95	142.33	68.62	
	ΠP	Min	124.66	168.12	168.12	124.66	168.12	106.36	73.20	121.23	121.23	73.20	121.23	54.90	
		Max	360.65	402.58	402.58	360.65	402.58	343.87	360.65	402.58	402.58	360.65	402.58	343.87	
Blac	Black		320.23	358.36	358.36	320.23	358.36	304.99	320.23	358.36	358.36	320.23	358.36	304.99	
		Min	281.35	315.66	315.66	281.35	315.66	267.62	281.35	315.66	315.66	281.35	315.66	267.62	

Table 8-14: 75% and	100% Color Ba	r Levels (Continued)
---------------------	---------------	----------------------

10-Step Staircase Levels

These numbers are calculated based on 10-Step Staircase test patterns with the worst case DAC parameters taken into account.

				P/	AL		NT	SC	Unite
			B,D,G,H,I	М	N	Nc	М	J	Units
		Max	438.92	475.27	475.27	438.92	475.27	422.15	mV
	1st	Тур	391.40	424.44	424.44	391.40	424.44	376.15	mV
		Min	345.40	375.13	375.13	345.40	375.13	331.67	mV
		Max	517.20	547.96	547.96	517.20	547.96	500.43	mV
	2nd	Тур	462.56	490.52	490.52	462.56	490.52	447.31	mV
		Min	409.44	434.60	434.60	409.44	434.60	395.72	mV
		Max	589.89	620.65	620.65	589.89	620.65	578.71	mV
	3rd	Тур	528.64	556.60	556.60	528.64	556.60	518.48	mV
		Min	468.91	494.08	494.08	468.91	494.08	459.77	mV
		Max	668.17	693.33	693.33	668.17	693.33	656.99	mV
	4th	Тур	599.80	622.68	622.68	599.80	622.68	589.64	mV
		Min	532.96	553.55	553.55	532.96	553.55	523.81	mV
	5th	Max	746.45	766.02	766.02	746.45	766.02	735.27	mV
		Тур	670.97	688.76	688.76	670.97	688.76	660.80	mV
Step		Min	597.01	613.02	613.02	597.01	613.02	587.86	mV
St		Max	824.73	838.71	838.71	824.73	838.71	813.55	mV
	6th	Тур	742.13	754.84	754.84	742.13	754.84	731.96	mV
		Min	661.06	672.49	672.49	661.06	672.49	651.91	mV
		Max	897.42	911.40	911.40	897.42	911.40	891.83	mV
	7th	Тур	808.21	820.92	820.92	808.21	820.92	803.13	mV
		Min	720.53	731.96	731.96	720.53	731.96	715.95	mV
		Max	975.70	984.09	984.09	975.70	984.09	970.11	mV
	8th	Тур	879.37	887.00	887.00	879.37	887.00	874.29	mV
		Min	784.57	791.44	791.44	784.57	791.44	780.00	mV
		Max	1053.98	1056.77	1056.77	1053.98	1056.77	1048.39	mV
	9th	Тур	950.54	953.08	953.08	950.54	953.08	945.45	mV
		Min	848.62	850.91	850.91	848.62	850.91	844.05	mV
		Max	1132.26	1129.46	1129.46	1132.26	1129.46	1132.26	mV
	10th	Тур	1021.70	1019.16	1019.16	1021.70	1019.16	1021.70	mV
		Min	912.67	910.38	910.38	912.67	910.38	912.67	mV

Table 8-15: 10-Step Staircase Levels

Frequency Response

In a TV system, frequency response measurements evaluate a system's ability to uniformly transfer signal components of different frequencies without affecting their amplitudes. This parameter, which is also known as gain/frequency distortion or amplitude versus frequency response, evaluates the system's amplitude response over the entire video spectrum. In the S1D13746, the TV function is operating at 26-27MHz, which is over the video spectrum with enough margins such that TV signal amplitude will not be affected by the frequency within the video spectrum. Frequency response measurement is only affected by the rounding accuracy of the circuit and DAC performance. These numbers are calculated by comparing the amplitudes of the Mutliburst test patterns (this test pattern is not enabled in the S1D13746, so calculation is only based on simulation) with the worst case DAC parameters taken into account. The amplitude of each frequency packets is compared with that of the lowest frequency packet, and expressed in dB.

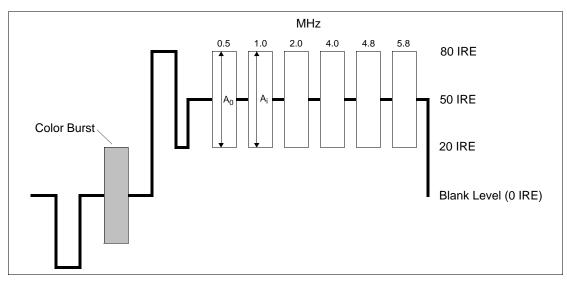


Figure 8-16: Frequency Response

Frequency Response = $20 \times \log(A_i & A_0)$ where A_0 = amplitude of 0.5MHz burst A_i = amplitude of burst above 0.5MHz, i = 1 to 5

					1 2 1				
				Fr	equency Re	sponse (in c	IB)		
				P	AL		NTSC		
			B,D,G,H,I	М	N	Nc	М	J	
	1MHz	Max	0.64	0.75	0.64	0.64	0.75	0.75	
		Тур	0.00	0.00	0.00	0.00	0.00	0.00	
		Min	-0.64	-0.75	-0.64	-0.64	-0.75	-0.75	
		Max	0.64	0.75	0.64	0.64	0.75	0.75	
~	2MHz	Тур	0.00	0.00	0.00	0.00	0.00	0.00	
Frequency		Min	-0.64	-0.75	-0.64	-0.64	-0.75	-0.75	
ənk	3MHz	Max	0.64	0.63	0.64	0.53	0.63	0.63	
rec	(4MHz)	Тур	0.00	-0.13	0.00	-0.11	-0.13	-0.13	
ц ж	(411112)	Min	-0.64	-0.88	-0.64	-0.75	-0.88	-0.88	
Burst	3.58MHz	Max	0.64	0.75	0.64	0.64	0.75	0.75	
B	(4.8MHz)	Тур	0.00	0.00	0.00	0.00	0.00	0.00	
	(4.0012)	Min	-0.64	-0.75	-0.64	-0.64	-0.75	-0.75	
	4.2MHz	Max	0.64	0.75	0.64	0.64	0.75	0.75	
		Тур	0.00	0.00	0.00	0.00	0.00	0.00	
	(5.8MHz)	Min	-0.64	-0.75	-0.64	-0.64	-0.75	-0.75	

Table 8-16: Frequency Response

In a TV system, chrominance non-linearity gain distortion is present if chrominance gain is dependent on chrominance amplitude. In the S1D13746, the chrominance gain is not affected by the chrominance amplitude. The chrominance gain non-linearity is only affected by rounding accuracy of the circuit and DAC performance. These numbers are calculated by comparing the amplitude of packets in the Modulated Pedestal test pattern (this test pattern is not enabled in the S1D13746, so calculation is only based on simulation) with the worst case DAC parameters taken into account. The amplitude of the packets compared with the amplitude of the normalized middle packet, expressed as percentage of the nominal amplitude is the chrominance gain non-linearity.



Figure 8-17: Chrominance Gain Non-Linearity

Chrominance Gain Non-Linearity = $100 \times |(A_i - k_i \times A_2) \otimes (k_i \times A_2)|$ where: A = amplitude of received sub-carrier

i = position of burst (1 being the smallest, 3 the largest)

- $k_i = (2i 1) \& 3$ for 625-line signal $k_i = 2^{i-2}$ for 525-line signal

				P/		NTSC		
			B,D,G,H,I	М	N	Nc	М	J
y V	Smallest	Max	15.24%	16.59%	15.24%	15.24%	16.59%	16.59%
าance n earity	Pedestal	Тур	0.00%	0.45%	0.00%	0.00%	0.45%	0.45%
ain ain inea	reuestai	Min	-14.16%	-15.74%	-14.16%	-14.16%	-15.74%	-15.74%
omina Gain -Line	Largest	Max	6.48%	8.77%	6.48%	6.48%	8.77%	8.77%
2 2	Pedestal	Тур	0.37%	0.22%	0.37%	0.37%	0.22%	0.22%
υz	reuestai	Min	-5.31%	-7.45%	-5.31%	-5.31%	-7.45%	-7.45%

Table 8-17: Chrominance	Gain Non-Linearity
-------------------------	--------------------

Chrominance-to-Luminance Intermodulation

In a TV system, chrominance-to-luminance intermodulation is present when luminance amplitude is affected by superimposed chrominance. In the S1D13746, the luminance and chrominance are processed independently and combined only before going to the DAC. The luminance amplitude is not affected by the chrominance, the chrominance-to-luminance is only affected by the rounding accuracy of the circuit and DAC performance. These numbers are calculated by comparing the averaged level of the packets in the Modulated Pedestal test pattern (this test pattern is not enabled in the S1D13746, so calculation is only based on simulation) with the worst case DAC parameters taken into account. The averaged level (high tip and low tip levels) of each packet is compared with the level of luminance only portion of the signal, and expressed in percentage.

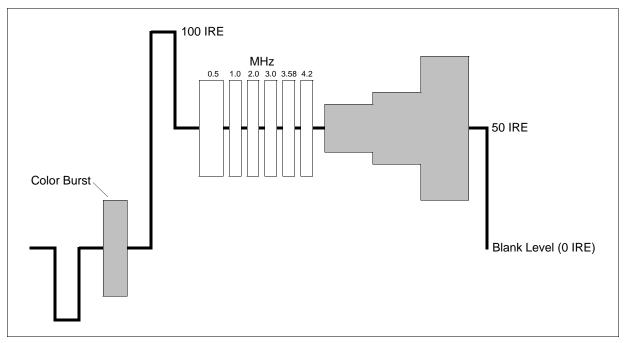


Figure 8-18: Before Chrominance is Filtered

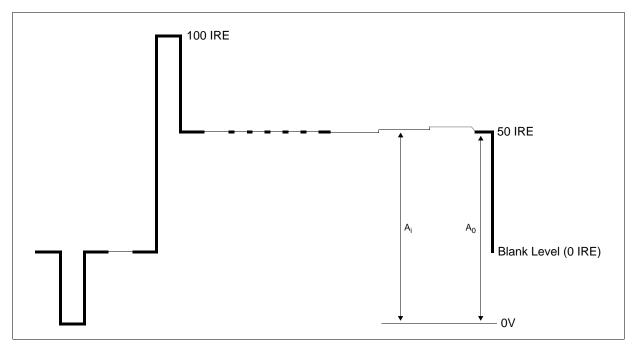


Figure 8-19: After Chrominance is Filtered

Chrominance-to-Luminance Intermodulation = $100 * (A_i - A_0) \& A0$ where:

A = amplitude of received sub-carrier.

i = position of burst (1 being the smallest, 2 the middle, 3 the largest).

 A_0 = amplitude of luminance only.

				PA	NTSC			
			B,D,G,H,I	М	Ν	Nc	М	J
	Smallest	Max	2.21%	2.24%	2.21%	2.21%	2.24%	2.24%
<u>ح</u>	Pedestal	Тур	-0.10%	-0.10%	-0.10%	-0.10%	-0.10%	-0.10%
Inter-Modulation	i edestai	Min	-2.35%	-2.38%	-2.35%	-2.35%	-2.38%	-2.38%
ula	Middle	Max	2.21%	2.24%	2.21%	2.21%	2.24%	2.24%
ро	Pedestal	Тур	-0.10%	-0.10%	-0.10%	-0.10%	-0.10%	-0.10%
Σ	i edestai	Min	-2.35%	-2.38%	-2.35%	-2.35%	-2.38%	-2.38%
Itel	Largest	Max	2.21%	2.24%	2.21%	2.21%	2.24%	2.24%
-	Pedestal	Тур	-0.10%	-0.10%	-0.10%	-0.10%	-0.10%	-0.10%
	i euestai	Min	-2.35%	-2.38%	-2.35%	-2.35%	-2.38%	-2.38%

Table 8-18: Chrominance to Luminance Intermodulation

Differential Gain Non-Linearity

In a TV system, differential gain non-linearity is present if chrominance gain is dependent on luminance level. These amplutide errors are a result of the system's inability to uniformly process the high-frequency chrominance signal at all luminance levels. In the S1D13746, the luminance and chrominance are processed independently and combined only before going to the DAC. The chrominance gain is not affected by the luminance level, the differential gain non-linearity is only affected by DAC performance. These numbers are calculated by comparing the peak-to-peak chrominance amplitude of the steps in the Modulated 10-Step Staircase test pattern with the worst case DAC parameters taken into account. Differential gain non-linearity is maximum, minimum, and peak deviation chrominance amplitude of all 10 steps, compared with the chrominance amplitude at the blanking (black) level, and expressed in percentage.

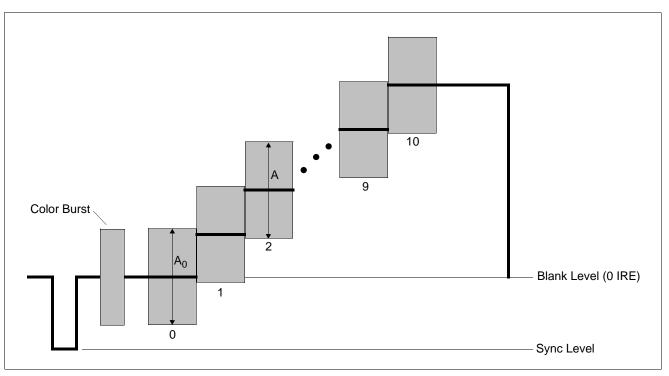


Figure 8-20: Differential Gain Non-Linearity

Differential Gain Non-Linearity:

 $+X = 100 \text{ x} | \text{Max}(A_i) \& A_0 - 1 | \\ -Y = 100 \text{ x} | \text{Min}(A_i) \& A_0 - 1 | \\ X+Y = 100 \text{ x} | (\text{Max}(A_i) - \text{Min}(A_i)) \& A_0 | \\ \text{where:} \\ A_0 = \text{amplitude of the received sub-carr}$

 A_0 = amplitude of the received sub-carrier at blanking level.

 A_i = amplitude of the sub-carrier on any relevant tread of the staircase, i = 1 to 10

				P/		NTSC		
			B,D,G,H,I	М	Ν	Nc	М	J
c ,	+X	Worst Case	10.67%	11.27%	11.27%	10.67%	11.37%	11.37%
Gain rrity	тл	Typical	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	-Y	Worst Case	9.64%	10.13%	10.13%	9.64%	10.21%	10.21%
enti Lin	-1	Typical	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
iffere Non-		Worst Case	10.67%	11.27%	11.27%	10.67%	11.37%	11.37%
Differential Non-Linea	X+Y	Typical	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Table 8-19: Differential Gain Non-Linearity

9 Clocks

9.1 Clock Block Diagram

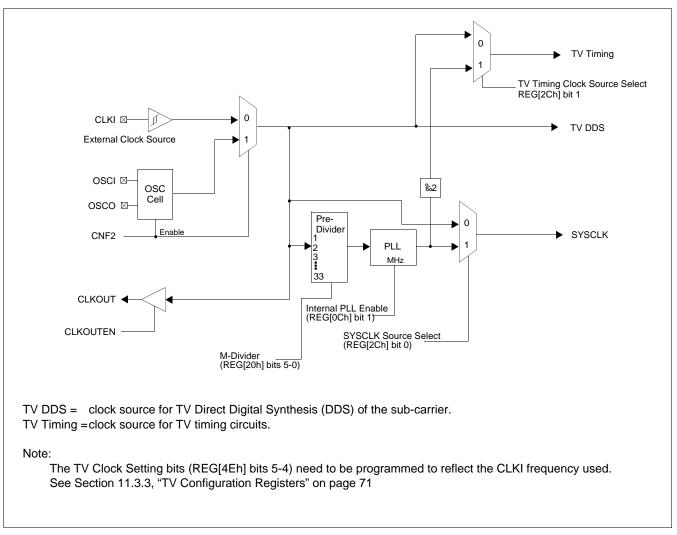


Figure 9-1: S1D13746 Clock Block Diagram

9.2 PLL Block Diagram

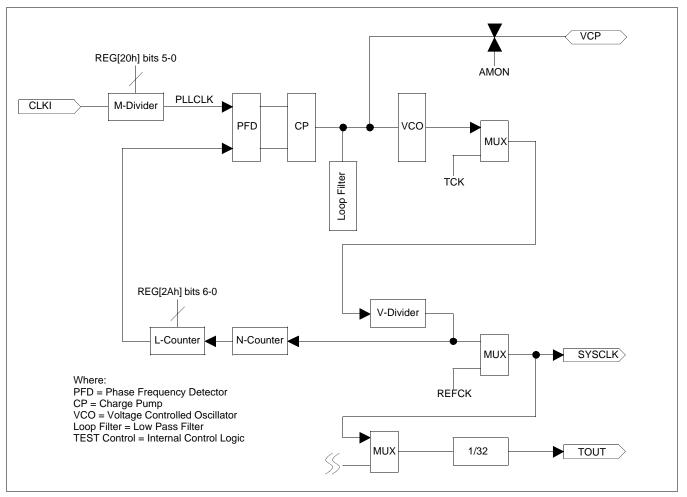


Figure 9-2: PLL Block Diagram

10 Memory Map

The S1D13746 includes 312k byte of embedded SRAM. The memory is used for the Display Buffer which contains both main image data and overlay image data.

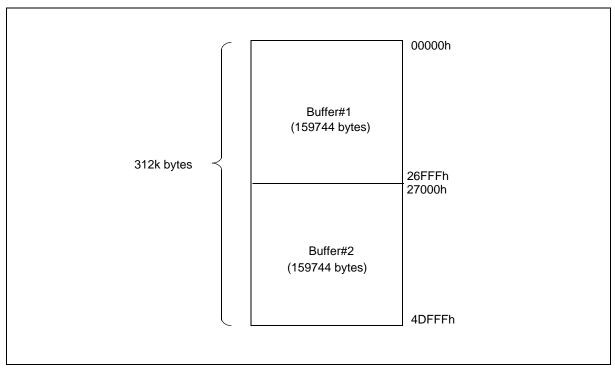


Figure 10-1: Physical Memory

11 Registers

This section discusses how and where to access the S1D13746 registers. It also provides detailed information about the layout and usage of each register.

All S1D13746 registers are accessed through either the Intel 80 interface or the Serial Interface. All register access is 8-bit only, except for the Display Memory Data Port (REG[A0h]), which is accessed as 16-bit (if CNF1=1) or 8-bit (if CNF1=0). The width of the Intel 80 interface is configured by the configuration pins (CNF).

Burst data reads/writes from/to the register space are supported. A write with D/C# low sets up the register address for the next register read/write. The register address increments on a word boundary after each read or write with D/C# high. This applies to all register write accesses except the Memory Data Port (REG[A0h]), the TV Filter Coefficient and User Clock Ratio Data register (REG[56h]). All writes to these registers auto increment the internal memory address only.

11.1 Register Mapping

The S1D13746 registers are memory-mapped. Asynchronous registers are accessible at all times. Synchronous registers are only accessible when power save mode is disabled (REG[2Eh]) and the PLL is locked (REG[20h] bit 7 = 1b).

-		
Address	Туре	Function
00h to 02h	Asynchronous	Product Information Registers
20h to 2Eh	Asynchronous	Clock Configuration Registers
40h to 56h	Synchronous	TV Configuration Registers
60h to 6Ah	Synchronous	Input Data Control Registers
80h to 9Ch	Synchronous	Display Output Control Registers
A0h to A6h	Synchronous	Display Memory Access Registers
C0h to EAh	Synchronous	3X3 Pixel Matrix Filter Registers
ECh to EEh	Synchronous	Miscellaneous Registers
F0h to FAh	Asynchronous	General Purpose IO Pins Registers

Table 11-1: S1D13746 Register Mapping

11.2 Register Set

The S1D13746 registers are listed in the following table.

Register	Pg	Register	Pg
Product	t Inform	nation Registers	
REG[00h] Revision Code Register	65	REG[02h] Configuration Readback Register	65
Clock C	onfigu	ration Registers	
REG[20h] PLL M-Divider Register	66	REG[22h] PLL Setting Register 0	67
REG[24h] PLL Setting Register 1	67	REG[26h] PLL Setting Register 2	67
REG[28h] PLL Setting Register 3	67	REG[2Ah] PLL Setting Register 4	68
REG[2Ch] Clock Source Select Register	69	REG[2Eh] Power Save Register	70
TV Co	nfigura	tion Registers	
REG[40h] TV Display Configuration Register	71	REG[42h] TV Vertical Blanking Interval Data bits Register 0	72
REG[44h] TV Vertical Blanking Interval Data bits Register 1	72	REG[46h] TV Vertical Blanking Interval Data bits Register 2	72
REG[48h] TV Vertical Blanking Interval Data bits Register 3	72	REG[4Ah] VBI: Closed Caption / XDS Control / Status Register	76
REG[4Ch] TV DDS Fine Tuning Register 0	78	REG[4Eh] TV DDS Fine Tuning Register 1	78
REG[50h] TV Test Pattern Setting Register	80	REG[52h] TV Filter Setting Register	81
REG[54h] TV Filter Coefficient and User Clock Ratio Index Re	gister	REG[56h] TV Filter Coefficient and User Clock Ratio Data Regi	ster
	82		85
Input D	Data Co	ntrol Registers	
REG[60h] Input Data Format Register	86	REG[62h] Special Effects Register	87
Input Windo	w Size	/ Position Registers	
REG[64h] Host Input Window Height Register 0	94	REG[66h] Host Input Window Height Register 1	94
REG[68h] Host Input Window Width Register 0	94	REG[6Ah] Host Input Window Width Register 1	94
Display C	Output (Control Registers	
REG[80h] Display Mode Register	95	REG[82h] Display Output Window X Start Position Register 0	96
REG[84h] Display Output Window X Start Position Register 1	96	REG[86h] Display Output Window Y Start Position Register 0	97
REG[88h] Display Output Window Y Start Position Register 1	97	REG[8Ah] Display Output Window Height Register 0	97
REG[8Ch] Display Output Window Height Register 1	97	REG[8Eh] Display Output Window Width Register 0	98
REG[90h] Display Output Window Width Register 1	98	REG[92h] Border Color Register 0	99
REG[94h] Border Color Register 1	99	REG[96h] Border Color Register 2	99
REG[98h] TV Transparency Color Register 0	100	REG[9Ah] TV Transparency Color Register 1	100
REG[9Ch] TV Transparency Color Register 2	100	REG[9Eh] DAC Reference Source Select Register	101

Table 11-2: S1D13746 Register Set

P. Ltr.		Destates	-
Register	Pg	Register	Pg
Display Me	emory	Access Registers	
REG[A0h] Display Memory Data Port Register 0	102		
3X3 Pixel	Matrix	Filter Registers	
REG[C0h] 3X3 Pixel Matrix Filter Control Register	103	REG[C2h] 3X3 Pixel Matrix Filter Coefficient Table Register 0	106
REG[C4h] 3X3 Pixel Matrix Filter Coefficient Table Register 1	107	REG[C6h] 3X3 Pixel Matrix Filter Coefficient Register 2	107
REG[C8h] 3X3 Pixel Matrix Filter Coefficient Table Register 3	107	REG[CAh] 3X3 Pixel Matrix Filter Coefficient Table Register 4	108
REG[CCh] 3X3 Pixel Matrix Filter Coefficient Table Register 5	108	REG[CEh] 3X3 Pixel Matrix Filter Coefficient Table Register 6	108
REG[D0h] 3X3 Pixel Matrix Filter Coefficient Register 7	109	REG[D2h] 3X3 Pixel Matrix Filter Coefficient Table Register 8	109
REG[D4h] 3X3 Pixel Matrix Filter Coefficient Table Register 9	109	REG[D6h] 3X3 Pixel Matrix Filter Coefficient Table Register 10	110
REG[D8h] 3X3 Pixel Matrix Filter Coefficient Table Register 11	110	REG[DAh] 3X3 Pixel Matrix Filter Coefficient Register 12	110
REG[DCh] 3X3 Pixel Matrix Filter Coefficient Table Register 13	111	REG[DEh] 3X3 Pixel Matrix Filter Coefficient Table Register 14	111
REG[E0h] 3X3 Pixel Matrix Filter Scale Value for Luminance Y		REG[E2h] 3X3 Pixel Matrix Filter Scale Value for Chrominance	U
Channel Register	111	Channel Register	112
REG[E4h] 3X3 Pixel Matrix Filter Scale Value for Chrominance	V	REG[E6h] 3X3 Pixel Matrix Filter Offset Value for Luminance Y	
Channel Register	112	Channel Register	112
REG[E8h] 3X3 Pixel Matrix Filter Offset Value for Chrominance	U	REG[EAh] 3X3 Pixel Matrix Filter Offset Value for Chrominance	٧
Channel Register	113	Channel Register	113
Misce	llaneo	us Registers	
REG[ECh] Non-Display Period Control / Status Register	114	REG[EEh] Parallel RGB Interface Register	116
General Pu	irpose	IO Pins Registers	
REG[F0h] General Purpose IO Pins Configuration Register	117	REG[F2h] General Purpose IO Pins Status/Control Register	117
REG[F4h] GPIO Positive Edge Interrupt Trigger Register	117	REG[F6h] GPIO Negative Edge Interrupt Trigger Register	118
REG[F8h] GPIO Interrupt Status Register	118	REG[FAh] GPIO Pull Down Control Register	118

Table 11-2: S1D13746 Register Set (Continued)

11.3 Register Descriptions

All reserved bits must be set to the default value. Writing a non-default value to a reserved bit may produce undefined results. Bits marked as n/a have no hardware effect. Unless specified otherwise, all register bits are set to 0b during power-on reset.

Reserved registers must not be written. The Host must do a dummy read to reserved registers in Auto-Increment mode, or stop Auto-Increment after the last valid register before the reserved register and then re-start Auto-Increment from the next valid register.

11.3.1 Product Information Registers

REG[00h] Default = A	Revision Code .9h	Register					Read Only
		Product C	ode bits 5-0			Revision Co	ode bits 1-0
7	6	5	4	3	2	1	0
bits 7-2			s [5:0] (Read C the product of	•	luct code for the	e S1D13746 is	101010b.
bits 1-0			ts [1:0] (Read te the revision		sion code is 011	р.	

	REG[02h] Configuration Readback Register										
Default = not	applicable						Read Only				
Macrovision Bond Option		n/a		CNF3 Status	CNF2 Status	CNF1 Status	CNF0 Status				
7	6	5	4	3	2	1	0				
bit 7	Whe and	erovision Bond en this bit = 0t REG[80h] bit en this bit = 1t	o, the Macrovis 7 has no effect	sion block is pe t.	2		·				
bits 3-0	When this bit = 1b, the Macrovision block can be enabled (REG[80h] bit 7) CNF[3:0] Status (Read Only) These status bits return the current status of the configuration pins CNF[3:0]. For a func tional description of each configuration bit (CNF[3:0]), see Section 5.3, "Summary of Configuration Options" on page 29.										

11.3.2 Clock Configuration Registers

REG[20h] PL Default = 1Ah		Register					Read/Write		
PLL Lock (RO)	n/a			M-Divide	er bits 5-0				
7	6	5 4 3 2 1 0							
bit 7	This furtl Who play	her information	he status of the n, refer to Sect n, the PLL outp ibited.	tion 8.1.3, "PL out is not stable	The maximum L Clock" on pa e. In this state r	age 36.	e is 2.5ms. For ess to the dis-		
bits 5-0	The The	internal input	ne the divide r clock to the P	LL (PLLCLK)	CLKI and the ad must be betwee set accordingly	een 1 MHz an			

REG[04h] Bits 5-0	M-Divide Ratio
0h	1:1
01h	2:1
02h	3:1
03h	4:1
•••	•••
1Ah (default	27:1
•••	•••
20h	33:1
21h to 3Fh	Reserved

Table 11-3: PLL M-Divide Selection

6

5

7

3

This register must be programmed with the value F8h.

4

-	REG[24h] PLL Setting Register 1 Default = 80h Read/Write													
	PLL Setting Register 1 bits 7-0													
7			6		5		4	3		2		1		0

This register must be programmed with the value 80h.

REG[26h] PL Default = 28h	L Setting Reg	jister 2					Read/Write					
	PLL Setting Register 2 bits 7-0											
7	6	5	4	3	2	1	0					

This register must be programmed with the value 28h.

	REG[28h] PLL Setting Register 3 Default = 00h Read/Write										
	PLL Setting Register 3 bits 7-0										
7	6	5	4	3	2	1	0				

This register must be programmed with the value 00h.

1

2

0

REG[2Ah] P Default = 35h		ng Register	4									Re	ead/Write
n/a						L-(Counter bits	6-0					
7	6		5		4		3		2		1		0
bits 6-0		L-Counter bits [6:0] These bits are used to configure the PLL Output (in MHz) and must be set according to the following formula.									ding to the		
		PLL Outp	ut			er + 1) : LCLK)	x PLLC	LK					

Where:

PLL Output is the desired PLL output frequency (in MHz). L-Counter is the value of this register (in decimal). PLLCLK is the internal input clock to the PLL (in MHz).

CLKI Input Clock (MHz)	M-Divider REG[20h] bits 5-0	L-Counter REG[2Ah] bits 6-0	PLLCLK (MHz)	PLL Output (MHz)	TV DDS Clock Select (REG[2Ch] bit 2)	TV Timing Clock Select (REG[2Ch] bit 1)	TV Input Clock Setting (REG[4Eh] bits 5-4)	Program f _{sc} /f _{dds} and f _{timing} /f _{dds} REG[54h] ~ REG[56h]
27	26 (1Ah)	53 (35h)	1	54	0b	0b	00b	no
26	25 (19h)	53 (35h)	1	54	0b	1b	01b	no (see Note)
24	15 (0Fh)	35 (23h)	1.5	54	0b	1b	10b	yes
23	22 (16h)	53 (35h)	1	54	0b	1b	10b	yes
22	21 (15h)	53 (35h)	1	54	0b	1b	10b	yes
21	13 (0Dh)	35 (23h)	1.5	54	0b	1b	10b	yes
19.8	10 (0Ah)	29 (1Dh)	1.8	54	0b	1b	10b	yes
19.44	17 (11h)	49 (31h)	1.08	54	0b	1b	10b	yes
19.2	15 (0Fh)	44 (2Ch)	1.2	54	0b	1b	10b	yes
19	17 (11h)	53 (35h)	1	54	0b	1b	10b	yes
18	11 (0Bh)	35 (23h)	1.5	54	0b	1b	10b	yes

Note

For 26 MHz CLKI, f_{sc}/f_{dds} and f_{timing}/f_{dds} REG[54h] ~ REG[56h] must be programmed for NTSC M/J.

REG[2Ch] (Default = 00	500		electricities					Read/Write
			n/a			TV DDS Clock Source Select	TV Timing Clock Source Select	SYSCLK Source Select
7	6		5	4	3	2	1	0
bit 2		This "Clo Who or C	s bit selects t ocks" on pag en this bit = OSCx).	Source Select he TV DDS cloo ge 59. 0b (default), the 1b, the TV DDS	TV DDS cloc	k source is the	external Clock	
bit 1		This CLF PLL strue Whe OSC	s bit selects t XI is not 27M Clock Setti cture, see Se en this bit = Cx).	k Source Select he TV Timing c AHz, the PLL m ngs," on page 65 ction 9, "Clocks 0b, the TV Timi 1b, the TV Timi	lock source. If sust be program 8) and this bit s s" on page 59. ing clock source	nmed to 54MH should be set to be is the externa	z (see Table 1 o 1b. For detail al Clock input	1-4 "Example s on the clock
bit 0		This tion Whe	on the PLL en this bit =	e Select he system clock and clock struct 0b, the SYSCLI 1b, the SYSCLI	ture, see Sectio K source is the	n 9, "Clocks" external Clock	on page 59.	
		setti 1b). freq	ng this bit. T Once in slea uency. Once	be selected as the fo configure the p mode, REG[2 REG[20h] and as system cloc	PLL, sleep mo 20h] and REG[2 REG[2Ah] hav	ode needs to be 2Ah] can be ch	e enabled (REC anged to set th	G[2Eh] bit 1 = e desired PLL
		m	here may be emory must	up to a 2.5ms de not be accessed t 7), can be used	before PLL ou	itput is stable.	The PLL Lock	· ·

Page	70
------	----

Default = 00h						1	Read/Write
PWRSVE Input Pin Function			n/a			Sleep Mode Enable	Standby Mode Enable
7	6	5	4	3	2	1	0
oit 7	Th WI bit WI	then this bit $= 0^{\circ}$ 1) and setting then this bit $= 1^{\circ}$	es the function b, the PWRSVI either to 1b wil	E pin is ORed I enable Slee E pin is ORed	with the Sleep p Mode. l with the Star	Mode Enable	
bit 1	Th PW WI WI WI an <u></u>	VRSVE pin wh nen this bit = 0 nen this bit = 1 nen Sleep Mod nen Sleep Mod y memory acce	the Sleep powe hen REG[2Eh] I b, Sleep Mode b, Sleep Mode le is enabled, al le is disabled, th	bit 7 = 0b. is disabled (n is enabled. l internal bloc ne PLL requir tempted. The	ormal operations ormal operations cks, including es approximations	an also be contro on). the PLL, are dis tely 2.5ms lock , REG[20h] bit	sabled. time before
bit 0	t Sta Th the WI WI	REF/VREF an bits $1-0 = 00b$ a andby Mode En is bit controls to PWRSVE pin then this bit = 0 then this bit = 1	and REG[80h] I nable the Standby por a when REG[2E b, Standby Mor b, Standby Mor lode is enabled,	bit 2 = 0b. wer save mod [h] bit 7 = 1b. de is disabled de is enabled. all internal b	e. Standby mo (normal oper locks are disa	bled except for	controlled by the PLL.

11.3.3 TV Configuration Registers

REG[40h] TV Display Configuration Register Default = 00h Read/Write										
Reserved	VBI Selection bits 1-0		Output Signal Format	TV	Standard Select bits	2-0	n/a			
4	6	5	4	3	2	1	0			

bit 7

Reserved

The default value for this bit is 0b.

bits 6-5 VBI Selection bits [1:0] These bits control the Wide-Screen signalling standard.

REG[40h] bits 6-5	Standard
00b (default)	No VBI Data (default)
01b	Enable WSS according to ITU-R BT.1119-2 standard
10b	Enable WSS + CGMS + APS according to CEI 61880
11b	Enable the Closed Caption and XDS according to CEA-608-B

Table 11-5: Wide-Screen Signalling Standard

bit 4

Output Signal Format

This bit determines the format of the TV output signal. When this bit = 0b, the output signal format is composite video. When this bit = 1b, the output signal format is S-Video.

bits 3-1 TV Standard Select bits [2:0] These bits select the TV standard and sub-standard as follows.

REG[40h] bits 3-1	TV Standard	Sub-Standard	
000b (default)	625 Line System	PAL B, D, G, H, I	
001b	525 Line System	PAL M	
010b	625 Line System	PAL N	
011b	625 Line System	PAL Nc	
100b	525 Line System	NTSC M	
101b	525 Line System	NTSC J	
110b - 111b	Res	erved	

REG[42h] TV Vertical Blanking Interval Data bits Register 0 Default = 00h							Read/Write
			VBI Da	ta bits 7-0			
7	6	5	4	3	2	1	0
	Vertical Bl	anking Interva	I Data bits Re	nistor 1			
Default = 00h		anking interva		gister i			Read/Write
VBI Data bits 15-8							
7	6	5	4	3	2	1	0
Default = 00h VBI Data bits 23-16							Read/Write
7	6	5	4	3	2	1	0
REG[48h] T Default = 00h		anking Interva	Il Data bits Re	gister 3			Read/Write
VBI Data bits 31-23							
7	6	5	4	3	2	1	0
REG[48h] bit REG[46h] bit	s 7-0 s 7-0		`			<u> </u>	

REG[44h] bits 7-0 REG[42h] bits 7-0

VBI Data bits [31:0]

These bits configure the data required for wide-screen signalling. The data set differs based on the TV standard (see REG[40h] bits 6-5).

VBI			PAL		NTSC			
Data bit	Bit No	Name	Desc.		Name	Desc.		
0	0		1000b: Full format 4:3	1	Reference	Should be set to 1b		
1	1		0001b: Box 14:9 center	2	Reference	Should be set to 0b		
2	2		1010b: Box 14:9 top 1011b: Box 16:9 center	3	Aspect Ratio	0b: 4:3 full format 1b: 16:9 letter box		
3	З	Aspect Ratio	0100b: Box 16:9 top 1101b: Box > 16:9 center 1110b: Full format 14:9 or center shoot and protect 14:9 0111b: Full format 16:9 anamorphic		Parity	Even parity for bit no. 3 ~ 5 (B3 ~ B5)		
4	4	Film bit	0b: Camera mode 1b: Film mode	5	Reserved	Should be set to 0b		
5	5	Color Coding bit	g bit 0b: conventional coding 1b: Motion Adaptive Color Plus		Field Type Active	0b: Field type not active, output = 0. 1b: Field type active, output = 0 for first field, output = 1 for next field.		
6	6	Helper bit	0b: No helper 1b: Modulated helper	7	Frame Type Active	0b: Frame type not active, output = 0.1b: Frame type active, output = 0 for reference frame, output = 1 for other frame.		
7	7	Reserved	Should be set to 0b	8	Vertical Temporal Helper	0b: No. 1b: Yes.		
8	8	Subtitles Within Teletext bit	0b: No subtitles within teletext 1b: Subtitles within teletext	9	Vertical High Resolution Helper	0b: No. 1b: Yes.		
9	9		00b: No open subtitles 01b: Subtitles in active image area	10	Horizontal Helper	0b: No. 1b: Yes.		
10	10	Subtitling Mode	Mode 10b: Subtitles out of active image area 11b: Reserved		Horizontal Helper Pre- Combing	0b: No. 1b: Yes.		
11	11		0b: see Note	12	Assigned for use			
12	12	Reserved	0b: see Note	13	in TV broadcasting			
13	13		0b: see Note	14	stations	Should be set to 0b		
14				15				
15				16	Reserved	Should be set to 0b		
16				17				
17				18				
18				19]			
19				20	Error Correction	CRC codes for bit no. 3 ~ 17 (B3 ~ B17):		
20				21	Codes	$G(x) = X^{6} + X + 1$		
21				22				
22				23				
23				24	Reference	Should be set to 0b		

Table 11 7. VRI Data Bit Descriptions	(ITU-R BT.1119-2 / ETSI EN 300 294 625 and 5	525 Line systems)
Tuble 11-7. VBI Dulu Bli Descriptions	(110 - K B1.1119 - 27 E151 E1 = 500 294 025 unu 5	25 Line systems

Note

For ITU-R	For ITU-R BT.1119-2 bits 13 ~ 11 are reserved and should be written 000b						
For ETSI E	For ETSI EN 300 294 these bits have the following functions:						
bit 11	bit 11 Surround Sound 0b = no surround sound information						
		1b = surround sound mode					

		1b = surround sound mode
bit 12	Copy Right	0b = no copy right asserted or status unknown
		1b = copy right asserted
bit 13	Copying	0b = copying not restricted
		1b = copying restricted

r ugo r +

VBI Data	For NTSC System Only					
bit	Bit No	Name	Description			
0	1	Reference Bit	set to 1b			
1	2	Reference Bit	set to 0b			
2	3		Bits 4-3			
			00b: Normal 4:3			
3	4	Aspect Ratio	01b: Normal 16:9			
5			10b: Letter Box 4:3			
			11b: Reserved:			
4	5		Bits 8-5			
5	6	Copy Control	0000b: The bits 14-7 (CGMS-A, APS trigger, ASB			
6	7	Information	bits) are transferred. 1111b: The bits 14-7 are not transferred (bits 14-7			
7	8		are set to 0b).			
8	9		Bits 10-9			
9	10	CGMS-A bits	00b: Copying is permitted without restriction 01b: One generation of copies may be made 10b: Condition not to be used 11b: No copying is permitted			
10	11		Bits 12-11			
11	12	APS trigger bits	00b: PSP off 01b: PSP on, 2-line split burst on 10b: PSP on, split burst off 11b: PSP on, 4-line split burst on			
12	13	Analogue source bit	1b: Analog pre-recorded packaged medium. 0b: Not Analog pre-recorded packaged medium.			
13	14					
14	15		Shall be set to 0b			
15	16					
16	17					
17	18					
18	19					
19	20	CRCC bits	$G(x) = X^6 + X + 1$			
20	21					
21	22					
22			Must be set to 0b			
23			Must be set to 0b			
24			Must be set to 0b			
25			Must be set to 0b			
26			Must be set to 0b			
27			Must be set to 0b			
28 - 31			Must be set to 0b			

 Table 11-8: VBI Data Bit Descriptions (CEI 61880, 525 Line systems)

VDI	REG[4Ah] bit 1 = 0b (in auto WSS+CMGS+APS mode)						
VBI Data bit		See Table 1	1-10: when REG[4Ah] bit 1 = 1b				
	Bit No.	Name	Desc.				
0	1	S0.					
1	2	S1	Aspect Ratio Information: Start Position				
2	3	S2	The S0 to S5 bits define the Starting line number for				
3	4	S3	active picture information. The starting line number is computed by adding 22 (for 525-line System) to the				
4	5	S4	decimal number represented by bits S0 to S5.				
5	6	S5					
6	7	E0					
7	8	E1	Aspect Ratio Information: End Position				
8	9	E2	The E0 to E5 bits define the Ending line number for active picture information. The ending line number is				
9	10	E3	calculated by subtracting the decimal number				
10	11	E4	represented by bits E0 to E5 from 262 (for 525-line System).				
11	12	E5					
12	13	Q0	This bit indicates if the video is squeezed (Q0=1b) or normal (Q0=0b). Squeezed video results from compressing an original 16 X 9 image into 4 X 3 format without cropping off the side panels.				
13	14	ASB	the Analog Source Bit.				
14	15	APS, bit0	APS Bits 1-0				
15	16	APS, bit1	00b: No APS 01b: PSP On; Split Burst Off 10b: PSP On; 2 line Split Burst On 11b: PSP On; 4 line Split Burst On				
16	17	CGMS-A, bit0	CGMS-A Bits 1-0				
17	18	CGMS-A, bit1	00b: Copying is permitted without restriction 01b: Condition not to be used 10b: One generation of copies may be made 11b: No copying is permitted				
18	19						
19	20						
20	21	Reserved	The second byte of the "Copy Generation Management System" is reserved for future use. All reserved bits				
21	22	Reserved	shall be zero.				
22	23						
23	24						
24	25		Bits 27-25 - Auto XDS Packet Refresh Rate bits 2-0 This 3-bit register defines the refresh rate for the two XDS packets, "Aspect Ratio Information" and "Copy				
25	26		Generation Management System". The two XDS packets are sent out every				
26	27		8° (the value of this register + 1) /25 seconds for PAL, 8° (the value of this register + 1) /30 seconds for NTSC.				
27 - 31	28 - 32	Reserved	Must be set to 0b				

Table 11-9: VBI Data Bit Descriptions (CEA-608-B)

VBI Data bit	A		t 1 = 1b (in auto WSS+CGMS+APS disable mode) t 11-9: when REG[4A] bit 1 = 0b
	Bit Number	Name	Description
0-6	1-7	XDS Byte 1, D[0:6]	The first ASCII Character sent out on the Line21/22 field 1
8-14	9-15	XDS Byte 2, D[0:6]	The second ASCII Character sent out on the Line21/22 field 1
16-22	17-23	XDS Byte 3, D[0:6]	The first ASCII Character sent out on the Line284/384 field 2
24-30	25-31	XDS Byte 4, D[0:6]	The second ASCII Character sent out on the Line284/384 field 2

Table 11-10: VBI Data Bit Descriptions for XDS (CEA 608-B)

Default = 10		aption / XDS C		J			Read/Write
	Reserved		Frame VSYNC Period (RO)	Field 2 Data Valid	Field 1Data Valid	CEA 608-B Line 21 Data Service Auto Mode Disable	VBI Enable
7	6	5	4	3	2	1	0
oits 7-5		Reserved The default value for these bits is 000b.					
bit 4	Frame VSYNC Period (Read Only) When this bit = 0b, it indicates the time interval when TV Frame VSYNC is no When this bit = 1b, it indicates the time interval when TV Frame VSYNC is act						
	(RI VS	ring the active EG[46h] ~ REC YNC period, th ister.	G[4Ch]) and bi	ts $3 \sim 0$ of this	register. When	n not in an acti	ve TV Fram
	The active TV Frame VSYNC time interval depends on the TV standard set with REG[40h] bits 3-1. For for PAL B/D/G/H/I/Nc between lines 624 and 16 For for PAL N between lines 623 and 15 For for NTSC M/J between lines 1 to 18 For for PAL M between lines 523 and 15					t with	
bit 3 Field 2 Data Valid When this bit = 0b, VBI Data bits 30-16 are invalid or have already been s previous Field 2. Write a 1b to this bit when REG[4Eh] bit 4 = 1b to send VBI Data bits 30- next field 2.							
	Not 1 2	. This bit is o	•	n bit 1 = 1b and lb before updat		ts 6-5 = 11b.	

bit 2	Field 1 Data Valid When this bit = 0b, VBI Data bits 14-0 are invalid or have already been sent out on the previous Field 1. Write a 1b to this bit when REG[4Eh] bit 4 = 1b to send VBI Data bits 14-0 out at the next field 1.
	 Note 1. This bit is only valid when bit 1 = 1b and REG[44h] bits 6-5 = 11b. 2. Check REG[4Eh] bit 4 = 1b before updating this bit.
bit 1	CEA 608-B Line 21 Data Service Auto Mode Disable When this bit = 0b, the VBI Data + CGMS + APS is combined with the XDS sequence and sent out automatically on field 2 packets (field 1 packets are sent as zero data packets). Refer to Table 11-9: "VBI Data Bit Descriptions (CEA-608-B)," on page 75 for more information on the field 2 packet data transfer information.
	When this bit = 1b, the CEA 608-B Line 21 Data Service Auto Mode is disabled and REG[4E] bits [4:2] are used in conjunction with REG[46h ~ 4Ch] to send the XDS sequence manually on field 1 or 2 packets. Refer to Table 11-10: "VBI Data Bit Descriptions for XDS (CEA 608-B)," on page 76 more information on the field 1 and 2 packet data transfer information.
	Note This bit is only valid when REG[40h] bits 6-5 = 11b.
bit 0	VBI Enable When this bit = 0b, the VBI is disabled. When this bit = 1b, the VBI is enabled.

REG[4Ch] T Default = 00h		uning Registe	r 0				Read/Write	
	Reserved							
7	6	5	4	3	2	1	0	
REG[4Eh] T\ Default = 00h		uning Registe	r 1				Read/Write	
Rese	erved	TV Clocks S	etting bits 1-0	n/a		Reserved		
7	6	5	4	3	2	1	0	
REG[4Eh] bits 2-0Reserved The default value for these bits is 000_0000_0000b.REG[4Eh] bits 7-6Reserved The default value for these bits is 00b.								
REG[4Eh] bit	The		d in conjunctio	on with CLKI fr e clocks for the		G[2Ch] bits 2-	1, and	

Table 11-11: TV Input Clock Setting

REG[4Eh] bits 5-4	f _{timing} (frequency of the Clock used for Timing)	f _{dds} (frequency of the Clock used for internal DDS and DAC)
00b	27MHz	27MHz
01b	27MHz	26MHz
10b	27MHz	18 ~ 27MHz (Notes 1 and 2)
11b	Rese	erved

Page	79
------	----

CLKI Frequency (MHz)	TV Input Clock Setting (REG[4Eh] bits 5-4)	TV DDS Clock Select (REG[2Ch] bit 2) (see Note)	TV Timing Clock Select (REG[2Ch] bit 1)	Need to Program f _{sc} /f _{dds} and f _{timing} /f _{dds} Ratios?
27	00b	0b (CLKI)	0b (CLKI)	No
26	01b	0b (CLKI)	1b (PLL ‰ 2 = 27MHz)	No (Note 1)
18 f CLKI f 27	10b	0b (CLKI)	1b (PLL ‰ 2 = 27MHz)	Yes (Note 2)
1 f CLKI f 18	00b	1b (PLL ‰ 2 = 27MHz) (Note 3)	1b (PLL ‰ 2 = 27MHz)	No

Table 11-12: TV Clock Settings

Note

- 1. If REG[4Eh] bits 5-4 = 10b, (CLKI is not 27MHz or 26MHz), the f_{sc}/f_{dds} registers (REG[54h] Index 20~27 and REG[56h]) must be programmed with the correct values for NTSCM or NTSCJ.
- 2. If REG[4Eh] bits 5-4 = 10b and CLKI is less than 26MHz, the SCH Phase error cannot meet the consumer grade specification of within 20 degrees.
- 3. REG[2Ch] bit 2 allows the DDS clock to be selected from the PLL. However, due to PLL jitter there is no guarantee that all timings will be met as per ITU-BT470 or SMPTE170M.

REG[50h] T\ Default = 00h	/ Test Pattern S	etting Regis	ster				Read/Write
	Luminance Delay	y Setting 3-0			Test Pattern S	Select bits 3-0	
7	6	5	4	3	2	1	0
bits 7-4	These outpu L w	e bits determi t (REG[40h] uminance de here REG[5	bit 4 = 1b). lay = {(REG[0h] bits 7-4 is	etween the Lur 50h] bits 7-4) >	en 0000b to 110		ta for S-Video
bits 3-0		Pattern Selec bits select t		test patterns fr	rom the test pat	ttern generator	

Table 11-13: Test Pattern Definitions

REG[50h] bits 3-0	Test Pattern Description	Notes
0000b	Test Pattern Generator Disabled	Normal operation
0001b	75% Color Bar with 75% white	0
0010b	100% Color Bar	Start from 10.3us, every 6.7us
0011b	75% Color Bar with 100% white	
0100b	Reserved	
0101b	Constant Y (77IRE, YCbCr: 180/128/128)	all line active as hde
0110b	Constant Y + Red (YCbCr: 65/100/212)	all line active as fide
0111b	10-step staircase without chrominance	4us every step start from 13.5us
1000b	Ramp Y without chrominance	from 20.2us to 53.0us
1001b	10-step staircase with chrominance 1 (CbCr: 89/156)	for PAL
1010b	10-step staircase with chrominance 2 (CbCr: 73/128)	for NTSC
1011b	Ramp A with chrominance 1 (UV: -20/20)	for PAL
1100b	Ramp A with chrominance 2 (UV: -28/0)	for NTSC
1101b	100IRE Ramp with color A: n/-21/21, n: 0 -140	for NTSC
1110b	100IRE Ramp with color B: n/-28/0, n: 0 -140	for PAL
1111b	80IRE Ramp with color A: n/-21/21, n: 0 -448	for NTSC

Table 11-14: T	est Pattern	Usage for	Each	Video	Parameter
<i>Tuble</i> 11-14. 1	esi i unem	Usuge jur	Luch	viueo	i urumeter

Item/Parameters	Requirement	Test Signals
Differential Phase	< 4 ⁰	A modulated staircase (5 or 10) or a modulated ramp, $0^{o} \pm 1^{o}$ to the burst
Differential Gain	< 4%	10step modulated staircase
Hue Accuracy	< 3 ⁰	color bar
Saturation Accuracy	< 3%	color bar
SNR	> 48 dB	
SCH phase	40 ^o	any signals with color burst
Subcarrier Tolerance	< 2/1 Hz (NTSC/PAL)	

Default = 00h					D		Read/Write		
Elimination Disable		n/a	Res	erved	Programmable Filter Select	Chrominance Filter Enable	Luminance Filte Enable		
7	6	5	4	3	2	1	0		
bit 7	Dot-Crawl Elimination Disable This bit selects whether the NTSC Dot-Crawl Elimination circuit is enabled This bit has an effect only if NTSC M or NTSC J is selected (REG[40h] bits 101b) and composite video is selected as the output signal format (REG[40] For PAL standard or S-video output signal the NTSC Dot-Crawl Elimination abled. When this bit = 0b, the NTSC Dot-Crawl Elimination Circuit is enabled.								
	Nor J	This bit should b a. NTSC M b. Composit	be programme or NTSC J is t e video output ay is a CRT di	ised is used	the following o	conditions are	satisfied:		
	WI	then this bit $= 1$ b	o, the NTSC D	ot-Crawl Elim	ination Circuit	is disabled.			
oits 4-3		served e default value	for these bits i	s 00b.					
bit 2	Th pre Wl dai Wl	bgrammable Fil is bit selects where-programmed of the this bit = 0 brd. Then this bit = 1 be Section 22, "T	nether the filter or programmab o, the filter par o, the filters pa	ole using the re ameters are pre rameters are p	gisters REG[5- e-programmed rogrammable t	4h] and REG[according to t hrough registe	56h]. he TV stan-		
bit 1	Th WI	Chrominance Filter Enable This bit controls the chrominance filter function. When this bit = 0b, the chrominance filter is disabled. When this bit = 1b, the chrominance filter is enabled.							
bit 0	Luminance Filter Enable This bit controls the luminance filter function. When this bit = 0b, the luminance filter is disabled. When this bit = b1, the luminance filter is enabled.								

Default = 00h								Read/Write				
Reserved	n/a	_		1		Jser Clock Ratio Inde	1					
7	6	5		4	3	2	1	0				
pit 7		Reserved										
	,	The default v	value	for this bit is ()b.							
oits 5-0				ent and User C								
		The Luminance Filter is a 15-tap FIR filter which can be configured as a notch or low-pass										
	1	filter. The Cl	hromi	inance Filter is	a 15-tap low	-pass FIR Filte	er.					
					•		• •	ssociated with				
					-	-	-	ciated with it.				
				ter (4 bytes) w								
				hrough REG[5		uex legister pr	ovides access	to the 40 byte				
	Index 00h ~ 1Fh											
			•				•	e the Chromi-				
			ce coefficients (every coefficient has 2 bytes, first byte = coefficient, second byte, b									
	= sign bit).											
		Index 20h ~ 23h These 4 bytes set the ratio between TV timing clock (f_{timing}) and the DDS clock (f_{dds}) This clock ratio must be programmed when TV timing clock is not 27 MHz or 26 MH										
	1	I IIS CIOCK TE	ite 5	ust be program	nmed when I	v timing cloc.	K 1S not 2/ NL $f_{\rm res} = 2^{29}$ T	HZ OF 26 MHZ The default valu				
	i i	REG[4Eh] bits 5-4 is 10b. The 30-bit value is equal to $f_{timing}/f_{dds} \ge 2^{29}$. The de is 0.										
		Index 24h ~ 27h These last 4 bytes set the ratio between the subcarrier clock (f_{sc}) and the DDS clock (f_{sc})										
		This clock ratio must be programmed based on the TV standard (REG[40h] bi										
	DDS clock is not 27 MHz or 26 MHz (REG[4Eh] bits 5-4 is 10b) or when							n DDS clock i				
		26 MHz and NTSCM or NTSCJ is selected (REG[4Eh] bits $5-4 = 01b$ and										
		3-1 = 100b o	or 101	b). The 30-bit	value is equa	1 to $f_{sc}/f_{dds} \ge 2$						
	N	lote										
			_s ratic	is based on th	e TV standar	d. Therefore, i	t must be repr	ogrammed if t				
		TV standa	rd is c	changed in RE	G[40h] bits 3	-1.						

Example

If CLKI is 18 MHz and the TV standard is NTSCM: Sub Carrier f_{sc} is 3.5795454MHz DDS clock f_{dds} is 18MHz TV timing clock f_{timing} is 27MHz,

REG[2Ch] bits 2-1 should be set 01b REG[4Eh] bits 5-4 should be set 10b.

Clock Ratio $f_{timing}/f_{dds} = 27/18 \times 2^{29} = 805,306,368 = 3000_0000h$. The 4 bytes indexed from 20h to 23h in REG[54h] should be programmed as 00h, 00h, 00h, and 30h in REG[56h].

Clock Ratio $f_{sc}/f_{dds} = 3.5795454/18 \times 2^{32} = 854,112,802 = 32E8_BA21h$. The last 4 bytes indexed from 24h to 27h in REG[54h] should be programmed as 21h, BAh, E8h, and 32h in REG[56h].

Note

The Luminance and Chrominance Filters have the following default values.

REG[52h] bit 2	REG[40h] bit 4	TV Standard	Coefficient 0	Coefficient 1	Coefficient 2	Coefficient 3	Coefficient 4	Coefficient 5	Coefficient 6	Coefficient 7	Note
0b	1b	-	1FDh	005h	1FCh	1FDh	012h	1DAh	036h	0C3h	low-pass
0b	0b	NTSC, M/Nc PAL	1FDh	006h	00Ah	1E6h	1F1h	036h	008h	0BDh	Notch Filter @ 3.58MHz
0b	0b	(B,D,G, H,I,N) PAL	003h	1F6h	00Ah	00Eh	1D5h	01Ch	01Eh	0BFh	Notch Filter @ 4.43MHz
1b	-	-		Register values used							User Configuration

Table 11-15: Default Luminance Filter Values

Table 11-16: Default	Chrominance	Filter	Values
----------------------	-------------	--------	--------

REG[52h] bit 2	Coefficient 0	Coefficient 1	Coefficient 2	Coefficient 3	Coefficient 4	Coefficient 5	Coefficient 6	Coefficient 7	Note
0b	001h	001h	1FBh	1F5h	1FDh	01Dh	047h	05Bh	low-pass [1.5db attenuation @ 1.3MHz, > 20db at 3.6MHz]
1b				Register va	alues used				User Configuration

Index	Description	Index	Description
00h	luminance filter coefficient 0 register 0 (bits 7-0)	14h	chrominance filter coefficient 2 register 0 (bits 7-0)
01h	luminance filter coefficient 0 register 1 (sign bit)	15h	chrominance filter coefficient 2 register 1 (sign bit)
02h	luminance filter coefficient 1 register 0 (bits 7-0)	16h	chrominance filter coefficient 3 register 0 (bits 7-0)
03h	luminance filter coefficient 1 register 1 (sign bit)	17h	chrominance filter coefficient 3 register 1 (sign bit)
04h	luminance filter coefficient 2 register 0 (bits 7-0)	18h	chrominance filter coefficient 4 register 0 (bits 7-0)
05h	luminance filter coefficient 2 register 1 (sign bit)	19h	chrominance filter coefficient 4 register 1 (sign bit)
06h	luminance filter coefficient 3 register 0 (bits 7-0)	1Ah	chrominance filter coefficient 5 register 0 (bits 7-0)
07h	luminance filter coefficient 3 register 1 (sign bit)	1Bh	chrominance filter coefficient 5 register 1 (sign bit)
08h	luminance filter coefficient 4 register 0 (bits 7-0)	1Ch	chrominance filter coefficient 6 register 0 (bits 7-0)
09h	luminance filter coefficient 4 register 1 (sign bit)	1Dh	chrominance filter coefficient 6 register 1 (sign bit)
0Ah	luminance filter coefficient 5 register 0 (bits 7-0)	1Eh	chrominance filter coefficient 7 register 0 (bits 7-0)
0Bh	luminance filter coefficient 5 register 1 (sign bit)	1Fh	chrominance filter coefficient 7 register 1 (sign bit)
0Ch	luminance filter coefficient 6 register 0 (bits 7-0)	20h	f _{timing} /f _{dds} ratio [7:0]
0Dh	luminance filter coefficient 6 register 1 (sign bit)	21h	f _{timing} /f _{dds} ratio [15:8]
0Eh	luminance filter coefficient 7 register 0 (bits 7-0)	22h	f _{timing} /f _{dds} ratio [23:16]
0Fh	luminance filter coefficient 7 register 1 (sign bit)	23h	f _{timing} /f _{dds} ratio [29:24]
10h	chrominance filter coefficient 0 register 0 (bits 7-0)	24h	f _{sc} /f _{dds} ratio [7:0]
11h	chrominance filter coefficient 0 register 1 (sign bit)	25h	f _{sc} /f _{dds} ratio [15:8]
12h	chrominance filter coefficient 1 register 0 (bits 7-0)	26h	f _{sc} /f _{dds} ratio [23:16]
13h	chrominance filter coefficient 1 register 1 (sign bit)	27h	f _{sc} /f _{dds} ratio [29:24]

Table 11-17: Chrominance / Luminance Filter Coefficient Index

Table 11-18: Common f_{timing}/f_{dds} and f_{sc}/f_{dds} Ratios

f _{dds} (CLKI Frequency) (MHz)	Ratio (f _{timing} /f _{dds}) x 2 ²⁹	f _{timing} /f _{dds} Ratio Value (hex)	TV Standard	f _{sc} (MHz)	Ratio (f _{sc} /f _{dds}) x 2 ³²	f _{sc} /f _{dds} Ratio Value (hex)
18			NTSC	3.5795454	854112802	32E8BA21
18	805306368	30000000	PAL-M	3.57561149	853174134	32DA6776
18	00000000	3000000	PAL-Nc	3.58205625	854711914	32F1DE69
18			PAL - Others	4.43361875	1057902641	3F0E5030
19.2	75 107 1700	2D000000	NTSC	3.5795454	800730751	2FBA2E7F
19.2			PAL-M	3.57561149	799850751	2FACC0FE
19.2	754974720		PAL-Nc	3.58205625	801292419	2FC2C083
19.2			PAL - Others	4.43361875	991783726	3B1D6B2D
26		213B13B1	NTSC	3.5795454	591308863	233EA83F
26	557519793		PAL-M	3.57561149	590659016	2334BDC8
26			PAL-Nc	3.58205625	591723633	2344FC71
26			PAL - Others	4.43361875	732394136	2BA77298

REG[56h] TV Filter Coefficient and User Clock Ratio Data Register								
Default = 00h								
	TV Filter Coefficient and User Clock Ratio Data bits 7-0							
7	6	5	4	3	2	1	0	
bits 7-0	bits 7-0 TV Filter Coefficient and User Clock Ratio Data bits [7:0] This register specifies the data to be R/W based on the above indexed address (REG[54h] bits 4-0). Continuous write access to this register will auto increment the address above							

REG[58h] through REG[5Ah] are Reserved

(REG[54h] bits 5-0).

These registers are reserved and must not be written.

11.3.4 Input Data Control Registers

REG[60h] Input Data Format Register Default = 30h Read/Write								
n,	n/a YUV Input Data Type Select bits 1-0				Input Data Format Select bits 3-0			
7	7 6 5 4 3 2 1 0					0		

bits 5-4

YUV Input Data Type Select bits [1:0]

These bits define the YUV data type of input data to the S1D13746. The YUV input data is always converted to YCbCr before being written to the memory. The default type is YCbCr.

REG[60h] bits 5-4	Data Type	YRC Input Data Range
00b	YUV	0 f Y f 255 -128 f U f 127 -128 f V f 127
01b	YCbCr	16 <i>f</i> Y <i>f</i> 235 -113 <i>f</i> U <i>f</i> 112 -113 <i>f</i> V <i>f</i> 112
10b	YUV Offset	0 f Y f 255 0 f U f 255 0 f V f 255
11b (default)	YCbCr Offset	16 f Y f 235 16 f U f 240 16 f V f 240

Table 11-19: YUV Data Type Selection

bits 3-0 Input Data Format Select bits [3:0] These bits select the input data format. For details on individual data formats, see Section 12, "Intel 80, 8-Bit Interface Color Formats" on page 119, Section 13, "Intel 80, 16-bit Interface Color Formats" on page 123, and Section 14, "YUV Timing" on page 129.

REG[60h] bits 3-0	Input Data Format
0000b	RGB 3:3:2
0001b	RGB 5:6:5
0010b	RGB 6:6:6 Mode 1
0011b	RGB 8:8:8 Mode 1
0100b	Reserved
0101b	Reserved
0110b	RGB 6:6:6 Mode 2 (note 3)
0111b	RGB 8:8:8 Mode 2 (note 3)
1000b	YUV 4:2:2
1001b	YUV 4:2:0
1010b - 1111b	Reserved

Note

- 1. All input data is converted and stored as YUV 4:2:0.
- 2. When using the Parallel RGB interface to input image data (CNF[1:0] = 00b or 10b), REG[60h] bit 3 must be set to 0b.
- 3. RGB 6:6:6 Mode 2 and RGB 8:8:8 Mode 2 are only supported for the 16-bit Intel 80 interface (CNF[1:0] = 11b).

REG[62h] Special Effects Register Default = 00h Read/Write							
Window Data Type	Double Buffer Enable	Background Window	Square Pixel Correction Enable	Transparency	Select bits 1-0	Window Rot	ation bits 1-0
7	6	5	4	3	2	1	0

bit 7

Window Data Type

This bit determines the data type for the window. For use case examples and double-buffer information, see Section 20, "Typical Use Case Descriptions" on page 159 and Section 21, "Double Buffer Description" on page 173.

When this bit = 0b, the data being written from the Host is considered "static" and is not double-buffered.

When this bit = 1b, the data being written from the Host is considered "streaming" and requires double-buffering (REG[62h] bit 6 = 1b).

bit 6	Double-Buffer Enable This bit is used to enable the Double-Buffer. For use case examples and double-buffer information, see Section 20, "Typical Use Case Descriptions" on page 159 and Section 21, "Double Buffer Description" on page 173. When this bit = 0b, the Double-Buffer is disabled for the window being written / activated. When this bit = 1b, the Double-Buffer is enabled for the window being written / activated to prevent image tearing with streaming data.
	When a Parallel RGB interface is selected (see CNF[1:0]), the following restrictions must be met or the Double-Buffer should not be used.
	• The input frame rate must be smaller than half of the output (display frame rate).
	• The input data burst must be shorter than the output frame period.
bit 5	Background Window This bit is used to change the input image type from background to destructive overlay. For use case examples and double-buffer information, see Section 20, "Typical Use Case Descriptions" on page 159 and Section 21, "Double Buffer Description" on page 173. When this bit = 0b, the window being written is considered a destructive overlay When this bit = 1b, the window being written is considered the background image
	Note For the Parallel RGB Host Interface (CNF[1:0] = 00 or 10), this bit must be set to 1b.
bit 4	Square Pixel Correction Enable When images are displayed on a calibrated TV, the length of a given number of pixels hor- izontally is not the same as the length of the same number of pixels vertically. For exam- ple, with a calibrated NTSC TV, a box which is 8x8 pixels will not look like a square but rather the width will look shorter than the height. When square pixel is enabled, the width of the output image will be scaled appropriately by the S1D13746 to make an NxN image look like a square. The square pixel scaling logic takes into account which TV standard (PAL or NTSC) is selected and scales accordingly. For NTSC, the image will be widened. For PAL, the image will be narrowed.
	When this bit = 0b, Square Pixel correction is disabled. (default)

When this bit = 1b, Square Pixel correction is enabled.

REG[62h] bit 4	TV Standard	Scaling Ratio	Maximum Output Width Setting
0	_	256/256 (1.000)	720
1b	NTSC	282/256 (1.101)	654 (654 x 282 ‰ 256 = 720)
1b	PAL	234/256 (0.914)	788 (788 x 234 ‰ 256 = 720)

Table 11-21: Square Pixel Correction

Note

Square Pixel Correction is not supported for PALM, REG[40h] bits 3-1 = 001b.

bits 3-2Transparency Select bits [1:0]
These bits select the transparency mode.
Normal Mode: in this mode, if the resulting scaled pixels equal the transparent color, they
are not written to memory. In this mode, there will be color artifacts surrounding the non-
transparent color.

Black/White Mode: in this mode, the transparent color is limited to white or black with the visible color being the opposite. In this mode, color artifacts are removed by forcing all pixels to be either transparent or not.

Text Mode: In this mode, the transparent color intensity range calculated from the Transparency Color Registers (REG[98h] ~ REG[9Ch]) determines if the pixel is transparent or not. This mode is similar to Black/White mode with the effect of removing more color artifacts.

REG[62h] bits 3-2	Transparency Mode
00b (default)	Disabled
01b	Normal Mode
10b	Black/White Mode
11b	Text Mode

Table 11-22: Transparency Select

bits 1-0

Window Rotation bits [1:0]

These bits determine the counter clock wise rotation applied to the window being written. If writing data from the Host, setting these bits will rotate as appropriate.

Table 11-23: Window Rotation

REG[6Ah] bits 1-0	Window Rotation
00b (default)	0°
01b	90°
10b	180°
11b	270°

Input Window Size / Position Registers

All windows written from the Host require the following parameters:

- Input Size (height, width): If processing the Background Image, the input size combined with the double-buffer bit is used to determine the scale-down ratio required to fit the image within available memory. All destructive windows written on-top of the background use the same scale-down ratio as the original background image.
- Output Size (height, width): If processing the Background Image, the Output Size is used to determine the scale-up ratio. All destructive windows written on-top of the background use the same scale-up ratio as the original background image.
- Output Position (only applicable if displaying multiple windows): The original Background Image does not have an associated position as it is always centered and bordered (if necessary). All destructive windows are referenced to the top-left of the background image.
- Background or Destructive Overlay?
- Double-Buffered?

Limitations

If the Double-Buffer feature is disabled, then there is 312k bytes of memory available for the image. If the Double-Buffer feature is enabled, then there is 156k bytes of memory available for the image.

The maximum input window resolution for RGB and YUV 4:2:2 formats is 3072x4092. The maximum input window resolution for YUV 4:2:0 format is 720x4092.

The overlay window output x,y start positions are referenced to the background output size (size after scaling). The overlay input window size is referenced to the background input size (size before scaling).

Depending on the background input window resolution, the input window width must be divisible by 2, 4, or 8, and height must be divisible by 2, 4, or 8. All subsequent destructive windows must follow the same divisibility numbers as the background window. The input window width/height divisibility thresholds are as follows:

If either input width or he	eight is within the range:	Both Restrictions Apply		
Input Window Width	ndow Width Input Window Height		Height Divisible by	
2 f width f 768	2 f height f1022	2	2	
772 f width f 1536	1024 f height f2044	4	4	
1544 f width f 3072	2048 f height f 4088	8	8	

Table 11-24: Window Width/Height Divisibility Thresholds

Note

- 1. In cases where the width and height fall within 2 different ranges with different divisibility restrictions, the largest divisibility restriction applies to both width and height. For example, a 720x2048 window has divisibility restrictions of 8 for both width and height.
- 2 When either the input width or input height falls within the ranges listed below, the associated restriction must be observed.
 - a. If 2*f*width*f*768 or 2*f*height*f*1022, the following restriction applies: Input Width x Input Height, 524,288
 - 2. For 772*f*width*f*1536 or 1024*f*Height*f*2044, the following restriction applies: Input Width & 2 x Input Height & 2, 524,288
 - 3. For 1544*f*width*f*3072 or 2048*f*Height*f*4088, the following restriction applies: Input Width & 4 x Input Height & 4 , 524,288

The following figure indicates supported input image resolutions as colored regions. Gray areas indicate background window resolutions that are not supported. The curves defining the bottom boundaries of not supported resolutions are defined as:

Lower Gray Area Height = A ‰ Width, where A = 524288 Upper Gray Area

Height = A & Width, where A = 2097152

Upper Boundary

Height = A & Width, where A = 8388608

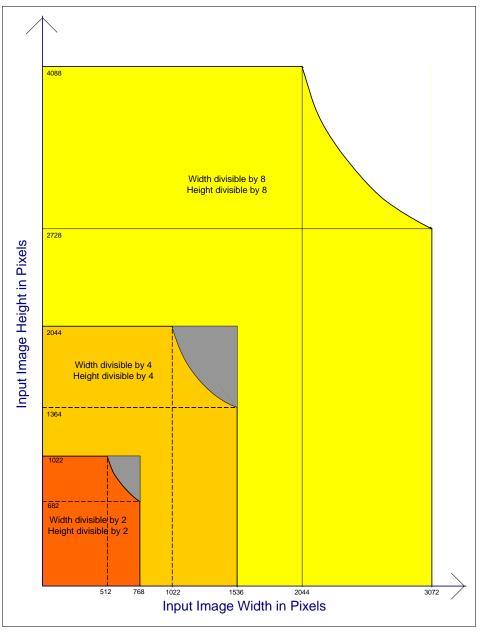


Figure 11-1: Input Image Restrictions Summary

The following table provides typical supported panel resolutions.

Example Common Supported Input Sizes	Resolution
QCIF	176x144
QVGA	320x240
CIF	352x288
WQVGA	400x240
VGA	640x480
WVGA	800x480
SVGA	800x600
XGA	1024x768
Wide Screen XGA	1280x800
SXGA	1280x1024
WXGA+	1440x900
UXGA	1600x1200
WUXGA+	2560x1600
720p	1280X720
1080i/p	1920X1080
1080p	1920x1080

Figure 11-2: Example Supported Input Sizes

REG[64h] I Default = 00		nput Wi	ndow l	Height R	egister	0						Read/W	Vrite
					Host I	nput Windo	w Height bits 7-0						
7		6		5		4	3		2		1	0	
REG[66h] I Default = 00		nput Wi	ndow l	Height R	egister	1						Read/W	Vrite
			n/a					Ho	st Input Wind	dow Heig	ht bits 11-8		
7		6		5		4	3		2		1	0	
REG[64h] b REG[68h] I Default = 00	Host Ir	T sł	hese bi nould sp	pecify the	ine the height	height of the i	of the window nput image p	-			-	ls. This v	
20100					Host	nout Winde	w Width bits 7-0						
7		6		5	1	4	3		2		1	0	
REG[6Ah] Default = 00		nput W	indow	Width Re	egister	1						Read/W	Vrite
			n/a					Ho	st Input Win	dow Widt	h bits 11-8		
7		6		5		4	3		2		1	0	
REG[6Ah] l REG[68h] b			ost Inp	ut Windo	w Widt	h bits []	11:0]						

These bits determine the width of the window input from the Host, in pixels. This value should specify the width of the input image prior to applying rotation.

11.3.5 Display Output Control Registers

REG[80h] Dis Default = 00h	splay Mode R	egister					Read/Write
Macrovision Enable	n/a			TV Display Blank	TV Enable	n	/a
7	6	5	4	3	2	1	0
bit 7	The can 1b. Whe	only be enable When REG[02 en this bit = 0t	feature is a bound of the feature is a boun	nd out option o acrovision Bon this bit has no sion block is er sion block is di	nd Option bit is effect. nabled.		
bit 3	This Whe	en this bit $= 0$ t	ne TV display o, the TV displ	pipeline and al ay pipeline is e outputs are forc	enabled.		
bit 2	This Whe	en this bit $= 0$ t	-	e. face is disabled face is enabled		ontrol signals a	re inactive.

Display Output Window Size / Position Registers

When writing a single or background image (REG[62h] bit 5), the desired Output Width / Height are required. The start position must be programmed to 0.

When writing destructive overlays (multiple windows), only the Start position is necessary. The Start position of the overlay window is relative to the top-left of the displayed background image.

Note

The overlay window output x,y start positions are referenced to the background output size (size after scaling). The overlay input window size is referenced to the background input size (size before scaling).

REG[82h] Display Output Window X Start Position Register 0 Default = 00h										
		Dis	play Output Window	X Start Position bits	7-0					
7	6	5	4	3	2	1	0			
REG[84h] Di Default = 00h	splay Output າ	Window X Sta	art Position R	egister 1			Read/Write			
	n/a Display Output Window X Start Position bits 9-8									
7	6	5	4	3	2	1	0			

REG[84h] bits 1-0 REG[82h] bits 7-0

Display Output Window X Start Position bits [9:0]

These bits determine the X start position of the window in relation to the top left corner of the background image, in pixels. For rotated orientations (see REG[62h] bits 1-0), the top left corner is still relative to the displayed image.

Note

If the host is writing the background image, these bits must be set to zero.

Default =	0011				<u> </u>					Read/Write
	1		1		Display (· .	Start Position bi	1	1	1
7		6		5		4	3	2	1	0
EG[88 h)efault =		y Outpi	ut Win	dow Y S	Start F	Position Re	gister 1			Read/Write
					n/a					out Window Y Start ion bits 9-8
7		6		5		4	3	2	1	0
		Т	hese bi	its deter	mine t	he Y start p		e window in re		op left corner on the top of t
		T th le	hese bi ne back eft corn ote	its deter ground er is stil	mine t image ll relat	he Y start p , in pixels. ive to the d	osition of the For rotated o isplayed ima	e window in re rientations (se	e REG[62h] t	oits 1-0), the to
-		T th le	hese bine back oft corn ote If the	its deter ground er is stil	mine t image ll relat writing	he Y start p , in pixels. ive to the d	osition of the For rotated o isplayed ima	e window in re rientations (se ge.	e REG[62h] t	oits 1-0), the to
REG[8AI Default =		T th le	hese bine back oft corn ote If the	its deter ground er is stil	mine t image Il relat vriting eight F	he Y start p e, in pixels. ive to the d g the backgr Register 0	osition of the For rotated of isplayed ima ound image,	e window in re rientations (se ge. these bits mu	e REG[62h] t	oits 1-0), the to
-		T th le	hese bine back oft corn ote If the	its deter ground er is stil	mine t image Il relat vriting eight F	he Y start p e, in pixels. ive to the d g the backgr Register 0	osition of the For rotated o isplayed ima	e window in re rientations (se ge. these bits mu	e REG[62h] t	oits 1-0), the to
Default = 7 REG[8CH	- 40h	T th le No	hese bine back off corm off If the ut Win	its deterning round ler is still host is v dow He	mine t image Il relat vriting eight f	he Y start p e, in pixels. ive to the d g the backgr Register 0	osition of the For rotated o isplayed ima ound image,	e window in re rientations (se ge. these bits mu	e REG[62h] t	ro. Read/Write
Default =	- 40h	T th le No	hese bine back off corm off If the ut Win	its deterning round ler is still host is v dow He	mine t image Il relat vriting eight f	he Y start p e, in pixels. ive to the d g the backgr Register 0	osition of the For rotated o isplayed ima ound image,	e window in re rientations (se ge. these bits mu	e REG[62h] t st be set to zer	ro. Read/Write

These bits determine the height of the window output to the display, in pixels. This value is used to determine the ratio required to scale-up the image stored in memory to the resulting displayed image. For rotated orientations (see REG[62h] bits 1-0), the top left corner is still relative to the displayed image.

Note

- 1. These bits are only used for the initial background image. All subsequent windows use the same scale ratio as defined by the background image.
- 2. The values of these registers are latched when REG[90h] is written, during the TV Vertical Blanking Period. REG[90h] should be the last register written before writing image data.

REG[8Eh] [Display Output	t Window Wi	dth Register	0			
Default = D0)h		-				Read/Write
			Display Output	Window Width bits 7-0			
7	6	5	4	3	2	1	0
REG[90h] D Default = 02	isplay Output h	Window Wi	dth Register	1			Read/Write
			n/a				ndow Y End Position ts 9-8
7	6	5	4	3	2	1	0

REG[90h] bits 1-0

REG[8Eh] bits 7-0 Display

Display Output Window Width bits [9:0]

These bits determine the with of the output window to the display, in pixels. This value is used to determine the scale-up ratio from the image stored in memory to the resulting displayed image. For rotated orientations (see REG[62h] bits 1-0), the top left corner is still relative to the displayed image.

Note

- 1. These bits are only used for the initial background image. All subsequent windows use the same scale ratio as defined by the background image.
- 2. When writing a background image, the values of these registers are latched when REG[90h] is written, during the TV Vertical Blanking Period. REG[90h] should be the last register written before writing image data.

Border Color Registers

	= 10h										Read/Write
	i					Border	Color - Y [7:0]		•		
7		6		5		4	3	2			
REG[94 Default	1h] Borde = 80h	r Colo	r Regi	ster 1							Read/Write
						Border	Color - U [7:0]				
7		6		5		4	3	2			
Default	6 h] Borde = 80h	r Colo	r Regi	ster 2							Read/Write
	1		ı		1		Color - V [7:0]	1	I		1
7		6		5		4	3	2		1	0
	h] bits 7-0	,	These l	oits spec	•	YUV (8	:8:8) compone does not matcl				
			These I resultir selected automa The bo 16 16	bits spec ng outpu d displa tically o	cify the at TV re y forma centered or must 235 240	YUV (8 esolution at (PAL o d within a	does not match or NTSC). When a border of the	h the approprient this occurs specified co	iate ful s, the D lor.	ll-screen isplay O	n is used if the resolution of th utput Window i shown below.

Transparency Color Registers

REG[98h] T	V Transparen	cy Color Regis	ster 0						
Default = 10h	-	- ,					Read/Write		
Transparency Color - Y [7:0]									
7	6	5	4	3	2	1	0		
REG[9Ah] T Default = 80h	•	cy Color Regi	ster 1				Read/Write		
			Transparency	Color - U [7:0]					
7	6	5	4	3	2	1	0		
REG[9Ch] T Default = 80h	•	cy Color Regi	ster 2				Read/Write		
			Transparency	Color - V [7:0]					
7	6	5	4	3	2	1	0		
REG[9Ch] bi REG[9Ah] bi		nsparency Colo nsparency Colo							

REG[98h] bits 7-0 Transparency Color - Y [7:0]

These bits specify the YUV (8:8:8) components of the transparency color. Transparency can only be used during the host data write. In this case, the transparency color is stripped from the input data before being written to memory, and therefore once written (enabled) can not be disabled. As with all other windows written, the transparency window is also considered destructive and can not be un-done.

The transparency color must be set to a value within the YCbCr Offset range as shown below, even if the input image data is in a different format.

16 f Y f 235 16 f U f 240 16 f V f 240

To calculate the YUV values for an equivalent RGB color, use the following formulas.

$$\begin{split} Y &= (838h \ x \ R + 1022h \ x \ G + 322h \ x \ B) \& 2000h + 10h \\ U &= (-4C1h \ x \ R - 94Eh \ x \ G + E0Eh \ x \ B) \& 2000h + 80h \\ V &= (E0Eh \ x \ R - BC7h \ x \ G - 247h \ x \ B) \& 2000h + 80h \end{split}$$

REG[9Eh] DAC Default = 00h	CReference Source Select Register	Read/Write
TV Display Horizontal Direction	TV Display Horizontal Position bits 2-0 TV Display Vertical Position bits 1-0 IREF Enable	VREF Enable
7	6 5 4 3 2 1	0
bit 7	TV Display Horizontal Direction This bit controls the direction the TV display moves when the TV Display Position (REG[9Eh] bits 6-4) is set. When this bit = 0b, REG[9Eh] bits 6-4 set the number of pixels the TV di to the left. When this bit = 1b, REG[9Eh] bits 6-4 set the number of pixels the TV di to the right.	splay will move
bits 6-4	TV Display Horizontal Position bits [2:0] These bits set the TV display horizontal position offset, in pixels, from th tion. The direction of the offset is controlled with bit 7 of this register.	e default posi-
bits 3-2	TV Display Vertical Position bits [1:0] These bits set the number of lines the TV display is moved down from the	default position
bit 1	IREF Enable DAC reference current source circuit enable. When this bit = 0b, the internal generation of the reference current is disa When this bit = 1b, the VADJ pin is enabled. For more information see Se "DAC External Components" on page 184	
bit 0	VREF Enable DAC reference voltage source circuit enable. When this bit = 0b, the DAC uses the external VREF mode. See "DAC E nents" on page 184.(Default) When this bit = 1b, the DAC uses the internal VREF mode. In this mode, ence voltage is supplied by the DAC.	Ĩ

11.3.6 Display Memory Access Registers

REG[A0h] D Default = not		ry Data Port R	egister 0				Read/Write
			Display Memory I	Data Port bits 15-8			
7	6	5	4	3	2	1	0
			Display Memory	Data Port bits 7-0			
7	6	5	4	3	2	1	0

REG[A0h] bits 15-0 D

Display Memory Data Port bits [15:0]

These bits are the data port for Host data writes to display memory and are used for all configurations.

Bits 7-0 form the least significant byte of the data word and are used for both 8-bit accesses (CNF[1:0] = 01b) and 16-bit accesses (CNF[1:0] = 11b). Bits 15-8 form the most significant byte of the data word and are used only for 16-bit accesses (CNF[1:0] = 11b).

Note

- 1. Burst data writes are supported through these registers. Once reaching this address, register auto increment is automatically disabled and all further writes to this register auto increment the internal memory address only.
- 2. The Host Window Size / Position registers (REG[64h] ~ REG[6Ah], REG[82h] ~ REG[88h]) must be programmed prior to writing the data.

REG[A2h] through REG[A6h] are Reserved

These registers are reserved and must not be written.

11.3.7 3X3 Pixel Matrix Filter Registers

REG[C0h Default =	-	Pixel Mati	rix Filter Contro	ol Register				Read/Write
				n/a				3x3 Filter Enable
7		6	5	4	3	2	1	0
bit 0		Th for W	3 Filter Enable his bit enables the r further information hen this bit = 0 then this bit = 1 then the bit = 1then the bit = 1 then the bit = 1 then the bit = 1 then the bit = 1then the bit = 1 then the bit = 1then the bit = 1 then the bit = 1then the bit = 1 then the bit = 1then the bit = 1 then the bit = 1then the bit = 1 then the bit = 1then the bit = 1 then the bit = 1then the bit = 1the bit = 1 then the bit = 1then the bit = 1	ation. , the 3x3 Filte	r is disabled.	'Image Enhand	cement Engin	e" on page 140

Note

SYSCLK must be 54MHz when 3x3 filter is enabled

3X3 Pixel Matrix Filter Coefficient Registers

		00		11	0	
Coefficient Table #	Register Address	Use for 3x3 Filter		Coefficient Table #	Register Address	Use for 3x3 Filter
0	REG[C2h] bits 2-0	Y0		14	REG[D2h] bits 2-0	U5
1	REG[C2h] bits 6-4	Y1		15	REG[D2h] bits 6-4	U6
2	REG[C4h] bits 2-0	Y2		16	REG[D4h] bits 2-0	U7
3	REG[C4h] bits 6-4	Y3		17	REG[D4h] bits 6-4	U8
4	REG[C6h] bits 4-0	Y4		18	REG[D6h] bits 2-0	V0
5	REG[C8h] bits 2-0	Y5		19	REG[D6h] bits 6-4	V1
6	REG[C8h] bits 6-4	Y6		20	REG[D8h] bits 2-0	V2
7	REG[CAh] bits 2-0	Y7		21	REG[D8h] bits 6-4	V3
8	REG[CAh] bits 6-4	Y8		22	REG[DAh] bits 4-0	V4
9	REG[CCh] bits 2-0	U0		23	REG[DCh] bits 2-0	V5
10	REG[CCh] bits 6-4	U1		24	REG[DCh] bits 6-4	V6
11	REG[CEh] bits 2-0	U2		25	REG[DEh] bits 2-0	V7
12	REG[CEh] bits 6-4	U3		26	REG[DEh] bits 6-4	V8
13	REG[D0h] bits 4-0	U4				
	•		-			•

Table 11-25: Coefficient Table Mapping

ſ	Y0	Y3	Y6	U0	U3	U6	V0	Y3	V6
	Y1	Y4	Y7	U1	U4	U7	V1	Y4	V7
	Y2	Y5	Y8	U2	U5	U8	V2	V5	V8

Figure 11-3: YUV Coefficient Matrix

Note

The data range for each coefficient is -15 to 15 (decimal) for the middle pixel and -3 to 3 (decimal) for all others. The two's complement values must be set from 10h to 0Fh. For Y4, U4, V4 the data range for the coefficients is -16 to 15. The 2's complement values must be set from 10h to 0Fh. For all other coefficients, the data range is -4 to 3. The 2's complement values must be set from 4h to 3h.

Note

The Y data after 3x3 filtering is: Y' = $(Y_0C_0+Y_1C_1+Y_2C_2+Y_3C_3+Y_4C_4+Y_5C_5+Y_6C_6+Y_7C_7+Y_8C_8)$ / Scale + Offset Scale: REG[E0h] Offset: REG[E6h] C_{0~8}: Coefficient (REG[C2h] ~ REG[CAh]) Y_{0~8}: Original Y data Y_0 Y_3 Y_6 Y_1 Y_4 Y_7 Y_2 Y_5 Y_8

Note

The U data after 3x3 filtering is: U' = $(U_0C_9+U_1C_{10}+U_2C_{11}+U_3C_{12}+U_4C_{13}+U_5C_{14}+U_6C_{15}+U_7C_{16}+U_8C_{17})$ / Scale + Offset Scale: REG[E2h] Offset: REG[E8h] $C_{9\sim17}$: Coefficient (REG[CCh] ~ REG[D4h]) $U_{0\sim8}$: Original U data $U_0 U_3 U_6$ $U_1 U_4 U_7$ $U_2 U_5 U_8$

Note

The V data after 3x3 filtering is: $V' = (V_0C_{18}+V_1C_{19}+V_2C_{20}+V_3C_{21}+V_4C_{22}+V_5C_{23}+V_6C_{24}+V_7C_{25}+V_8C_{26}) / \text{Scale} + \text{Offset}$ Scale: REG[E4h] Offset: REG[EAh] $C_{18\sim26}$: Coefficient (REG[D6h] ~ REG[DEh]) $V_{0\sim8}$: Original V data $V_0 V_3 V_6$ $V_1 V_4 V_7$ $V_2 V_5 V_8$

Coe0Coe3Coe6Coe1Coe4Coe7Coe2Coe5Coe8		_	
	Coe0	Coe3	Coe6
	Coe1	Coe4	Coe7
	Coe2	Coe5	Coe8

Figure 11-4 Coefficient Matrix

The filter scans left to right, top to bottom, with coe4 multiplying by the current pixel. The coefficients operate on each YUV component separately. After scaling and offsets are applied, the value is clipped back to 16 to 235 for the Y component and 16 to 240 for the U and V components.

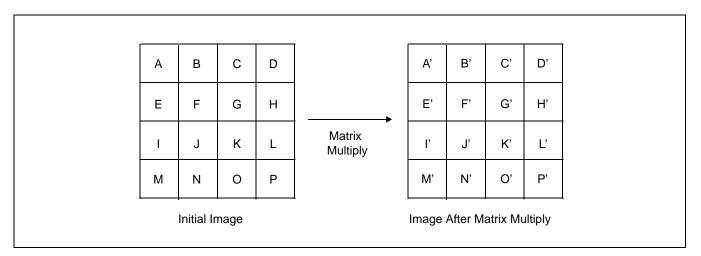
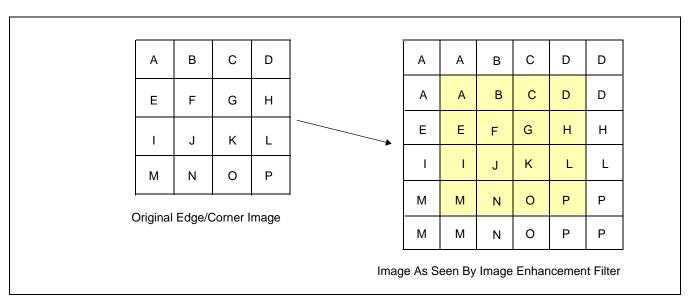



Figure 11-5 Matrix Multiply Example

The following formulas are used to calculate the resulting components (F'y, F'u, F'v). F is the pixel used in the calculation and the component sizes are Fy (8 bits), Fu (8 bits), and Fv (8 bits).

 $\begin{array}{l} F'y = Ay * Coe0 + By * Coe3 + Cy * Coe6 + Ey * Coe1 + Fy * Coe4 + Gy * Coe7 + Iy * Coe2 + Jy * Coe5 + Ky * Coe8 \\ F'u = Au * Coe0 + Bu * Coe3 + Cu * Coe6 + Eu * C0e1 + Fu * Coe4 + Gu * Coe7 + Iu * Coe2 + Ju * Coe5 + Ku * Coe8 \\ F'v = Av * Coe0 + Bv * Coe3 + Cv * Coe6 + Ev * C0e1 + Fv * Coe4 + Gv * Coe7 + Iv * Coe2 + Jv * Coe5 + Kv * Coe8 \\ \end{array}$

The top/left/right/bottom edges and corners of the original image are treated as follows, when the 3x3 matrix is applied to the edges and corners.

Figure 11-6 Edge/Corner Adjustment

The following formulas are used to calculate the resulting components (F'y, F'u, F'v). A is the pixel used in the calculation and the component sizes are Ay (8 bits), Au (8 bits), and Av (8 bits).

A'y = Ay * Coe0 + Ay * Coe3 + By * Coe6 + Ay * COe1 + Ay * Coe4 + By * Coe7 + Ey * Coe2 + Ey * Coe5 + Fy * Coe8 A'u = Au * Coe0 + Au * Coe3 + Bu * Coe6 + Au * COe1 + Au * Coe4 + Bu * Coe7 + Eu * Coe2 + Eg* Coe5 + Fu * Coe8 A'v = Av * Coe0 + Av * Coe3 + Bv * Coe6 + Av * COe1 + Av * Coe4 + Bv * Coe7 + Ev * Coe2 + Eb* Coe5 + Fv * Coe8

REG[C2h] 3X3 Pixel Matrix Filter Coefficient Table Register 0											
Default = 00h							Read/Write				
n/a	Y1 C	oefficient Table bit	s 2-0	n/a	Y0 0	Coefficient Table bits	s 2-0				
7	6	5	4	3	2	1	0				
bits 6-4	Y1 Coefficient Table bits [2:0] These bits are only used when the filter operation is selected (REG[C0h] bit $0 = 1b$). These signed 2's complement values specify the coefficient tables for the filter and are arranged Vertically .										
bits 2-0	Thes Thes	arranged Vertically . Y0 Coefficient Table bits [2:0] These bits are only used when the filter operation is selected (REG[C0h] bit 0 = 1b). These signed 2's complement values specify the coefficient tables for the filter and are arranged Vertically .									

Default = 00h							Read/Write				
n/a	Y3 Co	efficient Table bi	ts 2-0	n/a	Y2 C	Coefficient Table bits	2-0				
7	6	5	4	3	2	1	0				
bits 6-4	These These	Y3 Coefficient Table bits [2:0] These bits are only used when the filter operation is selected (REG[C0h] bit $0 = 1b$). These signed 2's complement values specify the coefficient tables for the filter and are arranged Vertically .									
oits 2-0		on is selected (he coefficient ta									

REG[C6h] 3X3 Pixel Matrix Filter Coefficient Register 2 Default = 01h Read/Write											
	n/a			Y4 (Coefficient Table bits	4-0					
7	6	5	4	3	2	1	0				
bits 4-0	Y4 (

These bits are only used when the filter operation is selected (REG[C0h] bit 0 = 1b). These signed 2's complement values specify the coefficient tables for the filter and are arranged **Vertically**.

REG[C8h] 3X Default = 00h		Filter Coef	icient Table R	egister 3			Read/Write				
n/a	Y6 C	oefficient Table b	ts 2-0	n/a	Y5 C	Coefficient Table bits	s 2-0				
7	6	5	4	3	2	1	0				
bits 6-4	Y6 Coefficient Table bits [2:0] These bits are only used when the filter operation is selected (REG[C0h] bit $0 = 1b$). These signed 2's complement values specify the coefficient tables for the filter and are arranged Vertically .										
bits 2-0	arranged Vertically . Y5 Coefficient Table bits [2:0] These bits are only used when the filter operation is selected (REG[C0h] bit $0 = 1b$). These signed 2's complement values specify the coefficient tables for the filter and are arranged Vertically .										

Page 107

	(3 Pixel Matrix	Filter Coeff	cient Table R	egister 4						
Default = 00h							Read/Write			
n/a	Y8 C	oefficient Table bits	s 2-0	n/a	Y7 C	Coefficient Table bits	: 2-0			
7	6	5	4	3	2	1	0			
bits 6-4	Y8 Coefficient Table bits [2:0] These bits are only used when the filter operation is selected (REG[C0h] bit $0 = 1b$). These signed 2's complement values specify the coefficient tables for the filter and are arranged Vertically .									
bits 2-0 Y7 Coefficient Table bits [2:0] These bits are only used when the filter operation is selected (REG[C0h] bit 0 = These signed 2's complement values specify the coefficient tables for the filter a arranged Vertically .										

REG[CCh] 32 Default = 00h	K3 Pixel Matrix	c Filter Coeff	icient Table R	egister 5			Read/Write				
n/a	U1 C	Coefficient Table bit	s 2-0	n/a	U0 (Coefficient Table bits	s 2-0				
7	6	5	4	3	2	1	0				
bits 6-4	Thes Thes	U1 Coefficient Table bits [2:0] These bits are only used when the filter operation is selected (REG[C0h] bit $0 = 1b$). These signed 2's complement values specify the coefficient tables for the filter and are arranged Vertically .									
bits 2-0	These	arranged Vertically . U0 Coefficient Table bits [2:0] These bits are only used when the filter operation is selected (REG[C0h] bit 0 = 1b). These signed 2's complement values specify the coefficient tables for the filter and are arranged Vertically .									

REG[CEh] 3X	3 Pixel Matrix	Filter Coeff	cient Table R	egister 6							
Default = 00h							Read/Write				
n/a	U3 Co	efficient Table bit	s 2-0	n/a	U2 (Coefficient Table bits	ts 2-0				
7	6	5	4	3	2	1	0				
bits 6-4	U3 Coefficient Table bits [2:0] These bits are only used when the filter operation is selected (REG[C0h] bit $0 = 1b$). These signed 2's complement values specify the coefficient tables for the filter and are arranged Vertically .										
bits 2-0	arranged Vertically . U2 Coefficient Table bits [2:0] These bits are only used when the filter operation is selected (REG[C0h] bit 0 = 1b). These signed 2's complement values specify the coefficient tables for the filter and are arranged Vertically .										

REG[D0h] 3) Default = 01h		x Filter Coeffi	cient Registe	r 7			Read/Write
n/a U4 Coefficient Table bits 4-0							
7	7 6 5 4 3 2					1	0
1							

bits 4-0

U4 Coefficient Table bits [4:0]

These bits are only used when the filter operation is selected (REG[C0h] bit 0 = 1b). These signed 2's complement values specify the coefficient tables for the filter and are arranged **Vertically**.

REG[D2h] 3X Default = 00h	3 Pixel Matri	x Filter Coef	ficient Table R	egister 8			Read/Write
n/a	U6	Coefficient Table bi	its 2-0				
7	6	5	4	3	2	1	0
bits 6-4	The The	ese bits are or	able bits [2:0] ly used when th complement va lly .	•			
bits 2-0	The The	ese bits are or	able bits [2:0] ly used when th complement va lly .	-		. – –	

REG[D4h] 3X Default = 00h	(3 Pixel Matrix	c Filter Coeffi	cient Table R	egister 9			Read/Write		
							Reau/White		
n/a	U8 (U8 Coefficient Table bits 2-0 n/a U7 Coefficient Table bits 2-0							
7	6	5	4	3	2	1	0		
bits 6-4	The		y used when the complement va	-	on is selected (e coefficient ta				
bits 2-0	The		y used when the complement va	-	on is selected (e coefficient ta				

REG[D6h] 3X	3 Pixel Matrix	Filter Coeff	icient Table R	egister 10			
Default = 00h							Read/Write
n/a	V1 C	oefficient Table bit	s 2-0	n/a	V0 (Coefficient Table bits	s 2-0
7	6	5	4	3	2	1	0
bits 6-4	Thes Thes	e bits are onl	complement va	ne filter operati llues specify th			
bits 2-0	Thes Thes	e bits are onl	complement va	ne filter operati llues specify th			

REG[D8h] 3X Default = 00h	3 Pixel Matrix	Filter Coeff	icient Table R	egister 11			Read/Write		
n/a	V3 Cc	V3 Coefficient Table bits 2-0 n/a V2 Coefficient Table bit							
7	6	5	4	3	2	1	0		
bits 6-4	These These	e bits are on	complement va	-	ion is selected (ne coefficient ta				
bits 2-0	These These	e bits are on	complement va	ne filter operati	ion is selected (ne coefficient ta				

REG[DAh] 32 Default = 01h	X3 Pixel Matri	x Filter Coeffi	cient Registe	er 12			Read/Write
	n/a			V4	Coefficient Table bits	4-0	
7	6	5	4	3	2	1	0

bits 4-0

V4 Coefficient Table bits [4:0]

These bits are only used when the filter operation is selected (REG[C0h] bit 0 = 1b). These signed 2's complement values specify the coefficient tables for the filter and are arranged **Vertically**.

Default = 00h							Read/Write
n/a	V6 Coe	efficient Table bit	ts 2-0	n/a	V5 C	Coefficient Table bits	2-0
7	6	5	4	3	2	1	0
oits 6-4	These These	bits are onl	able bits [2:0] by used when th complement va l ly .	-			
bits 2-0	These These	bits are onl	able bits [2:0] by used when the complement va				

Default = 00h							Read/Write			
n/a	V8 C	V8 Coefficient Table bits 2-0 n/a V7 Coefficient Table bits								
7	6	5	4	3	2	1	0			
bits 6-4	Thes Thes	V8 Coefficient Table bits [2:0] These bits are only used when the filter operation is selected (REG[C0h] bit $0 = 1b$). These signed 2's complement values specify the coefficient tables for the filter and are arranged Vertically .								
bits 2-0	Thes Thes	e bits are on	able bits [2:0] ly used when th complement va lly .	-						

REG[E0h] 3X Default = 01h		Filter Scale	Value for Lun	ninance Y Cha	annel Register		Read/Write
n	/a		Filter	Scale Value for Lurr	ninance Y Channel bi	ts 5-0	
7	6	5	4	3	2	1	0

bits 5-0

Filter Scale Value for Luminance Y Channel bits [5:0]

These bits are only used when the filter operation is selected (REG[C0h] bit 0 = 1b) and are ignored for all other operations. These unsigned bits specify the filter scale value for luminance (Y channel) and must be programmed such that the following formula is valid. 1 *f* REG[E0h] bits 5-0 *f* 3Fh

REG[E2h Default =	-	ixel Matrix	c Filter Scale	Value for Ch	rominance U C	hannel Regist	ter	Read/Write
	n/a			Filter	Scale Value for Chron	minance U Channel b	its 5-0	
7		6	5	4	3	2	1	0
bits 5-0		The	se bits are only	y used when the	nce U Channel he filter operati	on is selected (· ·

are ignored for all other operations. These unsigned bits specify the filter scale value for chrominance (U channel) and must be programmed such that the following formula is valid.

1 f REG[E2h] bits 5-0 f 3Fh

REG[E4h] 3) Default = 01h	(3 Pixel Matrix	k Filter Scale	Value for Chr	ominance V C	hannel Regis	ter	Read/Write
n	ı/a		Filter S	Scale Value for Chroi	minance V Channel b	oits 5-0	
7	6	5	4	3	2	1	0
bits 5-0				nce V Channel e filter operati		(REG[C0h] bi	it $0 = 1b$) and

are ignored for all other operations. These unsigned bits specify the filter scale value for chrominance (V channel) and must be programmed such that the following formula is valid.

1 f REG[E4h] bits 5-0 f 3Fh

REG[E6h] 3X Default = 00h		x Filter Offset	t Value for Lur	ninance Y Cha	annel Regi	ister		Read/Write
-		Filter	r Offset Value for Lum	ninance Y Channel bi	ts 8-1			
7	6	5	4	3	2		1	0
bits 7-0	Filt	ter Offset Valu	e for Luminanc	e Y Channel b	its [8:1]			

Filter Offset Value for Luminance Y Channel bits [8:1] This register is only used when the filter operation is selected (REG[C0h] bit 0 = 1b) and are ignored for all other operations. This register specifies bits [8:1] of the desired offset value (bit 0 is internal and forced to 0). These signed 2's complement bits specify the filter offset value for luminance (Y channel).

Note

The data range for each offset is -256 to 254 (decimal). The two's complement values must be set from 10h to 7Fh. For example, if an offset of 42h is required, program this register with 21h.

REG[E8h] 3 Default = 00	X3 Pixel Matri	x Filter Offset	Value for Chr	ominance U (Channel Regi	ster	Read/Write
		Filter	Offset Value for Chro	minance U Channel	bits 8-1		
7	6	5	4	3	2	1	0
bits 7-0	Thi are valu	s register is on ignored for all ue (bit 0 is inte	e for Chromina ly used when t other operatio rnal and forced rominance (U	he filter operat ns. This regist to 0). These si	tion is selected er specifies bit	s [8:1] of the	desired offset

Note

The data range for each offset is -256 to 254 (decimal). The two's complement values must be set from 10h to 7Fh. For example, if an offset of 42h is required, program this register with 21h.

Default = 0	JUN		Filter (Offset Value for Chr	ominance V Channel	hits 8-1		Read/Write
7		6	5	4	3	2	1	0
bits 7-0		Thi are val	is register is on ignored for all	ly used when other operation rnal and force	ons. This regist d to 0). These s	el bits [8:1] tion is selected ter specifies bits signed 2's comp	s [8:1] of the d	esired offset

Note

The data range for each offset is -256 to 254 (decimal). The two's complement values must be set from 10h to 7Fh. For example, if an offset of 42h is required, program this register with 21h.

11.3.8 Miscellaneous Registers

	Sh	1					Read/Write		
	n/a	TE Status (RO)	Input Busy Status (RO)	TE Output Pin Enable	TE Output Pin Function Select bits 2				
7	6	5	4	3	2	1	0		
bit 5	Thi (RE Wh	EG[ECh] bit 3 = en this bit = 0t	the status of the = 0b). o, the TE outpu o, the TE outpu	t is low (0).	ven when the T	TE Output Pin	is disabled		
bit 4	Thi mer this befo Wh	mory. There is a bit going low. Dre writing the en this bit $= 0$ t	gh when the in some latency b When writing	etween the last back-to-back	t pixel of a win windows, ensu not being writ	dow written b are that this bit ten to memory	y the Host and t returns low		
bit 3		Output Pin En s bit determine		state of TE is a	withut on the T				
	still disa Wh	bled. en this bit = 0t	g the TE Status o, the TE outpu o, the TE outpu	s bit (REG[EC at pin is disable	h] bit 5) even a	•			
bits 2-0	still disa Wh Wh TE	ubled. en this bit = 0t en this bit = 1t Output Pin Fut	g the TE Status	s bit (REG[EC at pin is disable at pin is enable its [2:0]	h] bit 5) even ed. d.	when the TE (

REG[ECh] bits 2-0	TE Output Pin Function
000b	Reserved
001b	Field 2 VNDP
010b	Field 1 VNDP
011b ~ 100b	Reserved
101b	TV Horizontal Non-Display Period ORed with TV Vertical Non-Display Period (The TE pin and status are active HIGH to indicate the specified condition is TRUE)
110b (default)	TV Vertical Non-Display Period (The TE pin and status are active HIGH to indicate the specified condition is TRUE)
111b	Reserved

VDP	
HDP	
TE Out	tput Pin when REG[ECh] bits 2-0
001b	
010b	
101b	
110b	

Figure 11-7: TE Output Pin Function Timing

REG[EEh] P Default = 00		GB In	terface Regis	ter				Read/Write	
		n/	a		Parallel RGB Interface PCLK Polarity	Parallel RGB Interface HS Polarity	Parallel RGB Interface VS Polarity	Parallel RGB Interface DE Polarity	
7	6		5	4	3	2	1	0	
bit 3		This Whe	s bit selects the en this bit $= 0$ t	rface PCLK Po e active polarit o, the data is va o, the data is va	y of the PCLK llid on the risin	ng edge of PCI			
bit 2		Parallel RGB Interface HS Polarity This bit selects the active polarity of the HS signal. When this bit = 0b, the data is valid when the HS signal is high. When this bit = 1b, the data is valid when the HS signal is low.							
bit 1		Parallel RGB Interface VS Polarity This bit selects the active polarity of the VS signal. When this bit = 0b, the data is valid when the VS signal is high. When this bit = 1b, the data is valid when the VS signal is low.							
bit 0		This Whe	s bit selects the en this bit $= 0$ t	rface DE Polar e active polarit o, the data is va o, the data is va	y of the DE sig llid when the D	DE signal is hig			

11.3.9 General Purpose IO Pins Registers

REG[F0h] General Purpose IO Pins Configuration Register Default = 00h										
GPIO7 Configuration	GPIO6 Configuration	GPIO5 Configuration	GPIO4 Configuration	GPIO3 Configuration	GPIO2 Configuration	GPIO1 Configuration	GPIO0 Configuration			
7	6	5	4	3	2	1	0			

bits 7-0

GPIO[7:0] Configuration

These bits configure the corresponding GPIO[7:0] pin between an input or output. When this bit = 0 (normal operation), the corresponding GPIO pin is configured as an input.

When this bit = 1b, the corresponding GPIO pin is configured as an output.

	REG[F2h] General Purpose IO Pins Status/Control Register Default = 00h Read/Write										
Default = 00h	Default = 00h										
GPIO7 Status	GPIO6 Status	GPIO5 Status	GPIO4 Status	GPIO3 Status	GPIO2 Status	GPIO1 Status	GPIO0 Status				
7	6	5	4	3	2	1	0				

bits 7-0

GPIO[7:0] Status

When the corresponding GPIO[7:0] pin is configured as an output (see REG[F0h]), writing a 1b to this bit drives GPIOx high and writing a 0b to this bit drives GPIOx low. When the corresponding GPIO[7:0] pin is configured as an input (see REG[F0h]), a read from this bit returns the raw status of GPIOx.

REG[F4h] GF Default = 00h	PIO Positive E	dge Interrupt	Trigger Regi	ster			Read/Write
GPIO7 Positive Edge Interrupt Trigger	GPIO6 Positive Edge Interrupt Trigger	GPIO5 Positive Edge Interrupt Trigger	GPIO4 Positive Edge Interrupt Trigger	GPIO3 Positive Edge Interrupt Trigger	GPIO2 Positive Edge Interrupt Trigger	GPIO1 Positive Edge Interrupt Trigger	GPIO0 Positive Edge Interrupt Trigger
7	6	5	4	3	2	1	0

bits 7-0

GPIO[7:0] Positive Edge Interrupt Trigger

This bit determines whether the associated GPIO interrupt (see REG[F8h]) is triggered on the positive edge (when the GPIOx pin changes from 0 to 1).

When this bit = 0b, the associated GPIO interrupt (GPIO_INT) is not triggered on the positive edge.

When this bit = 1b, the associated GPIO interrupt (GPIO_INT) is triggered on the positive edge.

REG[F6h] GPIO Negative Edge Interrupt Trigger Register Default = 00h									
GPIO7 Negative Edge Interrupt Trigger	GPIO6 Negative Edge Interrupt Trigger	GPIO5 Negative Edge Interrupt Trigger	GPIO4 Negative Edge Interrupt Trigger	GPIO3 Negative Edge Interrupt Trigger	GPIO2 Negative Edge Interrupt Trigger	GPIO1 Negative Edge Interrupt Trigger	GPIO0 Negative Edge Interrupt Trigger		
7	6	5	4	3	2	1	0		

bits 7-0

GPIO[7:0] Negative Edge Interrupt Trigger

This bit determines whether the associated GPIO interrupt (see REG[F8h]) is triggered on the negative edge (when the GPIOx pin changes from 1 to 0).

When this bit = 0b, the associated GPIOx interrupt (GPIO_INT) is not triggered on the negative edge.

When this bit = 1b, the associated GPIOx interrupt (GPIO_INT) is triggered on the negative edge.

REG[F8h] GPIO Interrupt Status Register										
Default = 00h										
GPIO7 Interrupt Status	GPIO6 Interrupt Status	GPIO5 Interrupt Status	GPIO4 Interrupt Status	GPIO3 Interrupt Status	GPIO2 Interrupt Status	GPIO1 Interrupt Status	GPIO0 Interrupt Status			
7	6	5	4	3	2	1	0			

bits 7-0

GPIO[7:0] Interrupt Status

If GPIOs are configured to generate an Interrupt (see REG[F4h] and REG[F6h]), these status bits indicate which GPIO generated the interrupt.

To clear the corresponding GPIO[7:0] Interrupt Status bit, write a 1b then a 0b to the bit.

REG[FAh] GPIO Pull Down Control Register Default = FFh									
GPIO7 Pull-down Control	GPIO6 Pull-down Control	GPIO5 Pull-down Control	GPIO4 Pull-down Control	GPIO3 Pull-down Control	GPIO2 Pull-down Control	GPIO1 Pull-down Control	GPIO0 Pull-down Control		
7	6	5	4	3	2	1	0		

bits 7-0

GPIO[7:0] Pull-down Control

All GPIO pins have internal pull-down resistors. These bits individually control the state of the corresponding pull-down resistor.

When the bit = 0, the pull-down resistor for the corresponding GPIO pin is inactive. When the bit = 1, the pull-down resistor for the corresponding GPIO pin is active.

12 Intel 80, 8-Bit Interface Color Formats

12.1 8 bpp Mode (RGB 3:3:2), 256 colors

When REG[60h] bits 3-0 = 0000b and CNF[1:0] = 01, the input data format for the Intel 80 Host interface is RGB 3:3:2.

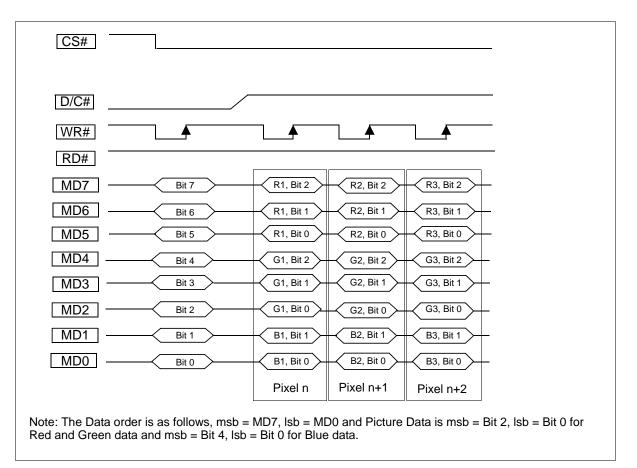


Figure 12-1: 8 bpp Mode (RGB 3:3:2), 256 colors

12.2 16 bpp Mode (RGB 5:6:5), 65,536 colors

When REG[60h] bits 3-0 = 0001b and CNF[1:0] = 01, the input data format for the Intel 80 Host interface is RGB 5:6:5.

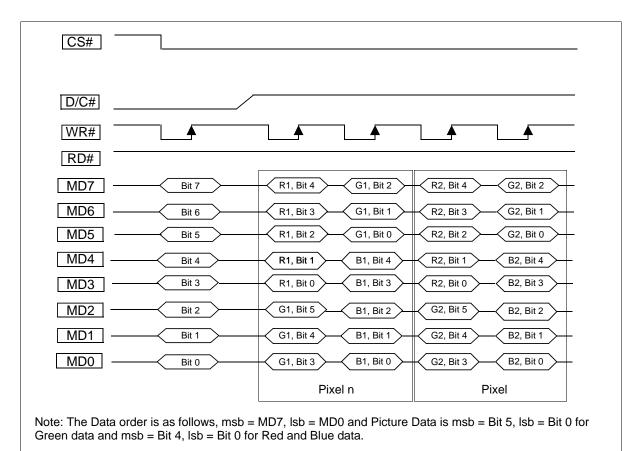


Figure 12-2: 16 bpp Mode (RGB 5:6:5), 65,536 colors

12.3 18 bpp (RGB 6:6:6), 262,144 colors

When REG[60h] bits 3-0 = 0010b and CNF[1:0] = 01, the input data format for the Intel 80 Host interface is RGB 6:6:6.

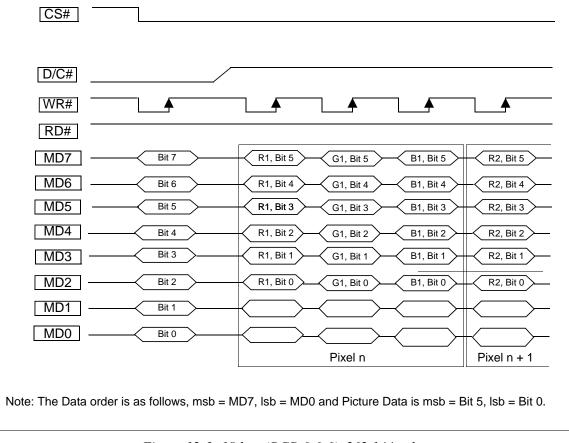


Figure 12-3: 18 bpp (RGB 6:6:6), 262,144 colors

12.4 24 bpp (RGB 8:8:8), 16,777,216 colors

When REG[60h] bits 3-0 = 0011b and CNF[1:0] = 01, the input data format for the Intel 80 Host interface is RGB 8:8:8.

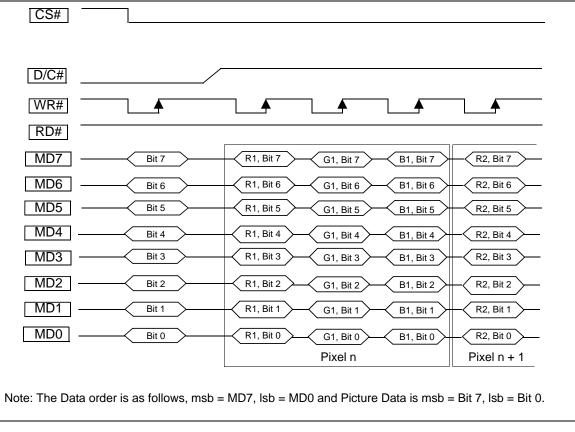


Figure 12-4: 24 bpp (RGB8:8:8), 16,777,216 colors

13 Intel 80, 16-bit Interface Color Formats

13.1 8 bpp (RGB 3:3:2), 256 colors

When REG[60h] bits 3-0 = 0000b and CNF[1:0] = 11, the input data format for the Intel 80 Host interface is RGB 3:3:2.

D/C#		
WR#		
RD#		
MD15	Bit 15	R1, Bit 2 R3, Bit 2 R5, Bit 2
MD14 —	Bit 14	R1, Bit 1 R3, Bit 1 R5, Bit 1
MD13 —	Bit 13	R1, Bit 0 R3, Bit 0 R5, Bit 0
MD12	Bit 12	G1, Bit 2 G3, Bit 2 G5, Bit 2
MD11	Bit 11	G1, Bit 3 G3, Bit 1 G5, Bit 1
MD10	Bit 10	G1, Bit 0 G3, Bit 0 G5, Bit 0
MD9	Bit 9	B1, Bit 1 B3, Bit 1 B5, Bit 1
MD8	Bit 8	B1, Bit 0 B3, Bit 0 B5, Bit 0
MD7	Bit 7	R2, Bit 2 R4, Bit 2 R6, Bit 2
MD6 —	Bit 6	R2, Bit 1 R4, Bit 1 R6, Bit 1
MD5	Bit 5	R2, Bit 0 R4, Bit 0 R6, Bit 0
MD4	Bit 4	G2, Bit 2 G4, Bit 2 G6, Bit 2
MD3	Bit 3	G2, Bit 1 G4, Bit 1 G6, Bit 1
MD2	Bit 2	G2, Bit 0 G4, Bit 0 G6, Bit 0
MD1	Bit 1	B2, Bit 1 B4, Bit 1 B6, Bit 1
MD0	Bit 0	B2, Bit 0 B4, Bit 0 B6, Bit 0
		Pixel n+1 Pixel n + 3 Pixel n + 5

Figure 13-1: 8 bpp (RGB 3:3:2), 256 colors

13.2 16 bpp (RGB 5:6:5), 65,536 colors

When REG[60h] bits 3-0 = 0001b and CNF[1:0] = 11, the input data format for the Intel 80 Host interface is RGB 5:6:5.

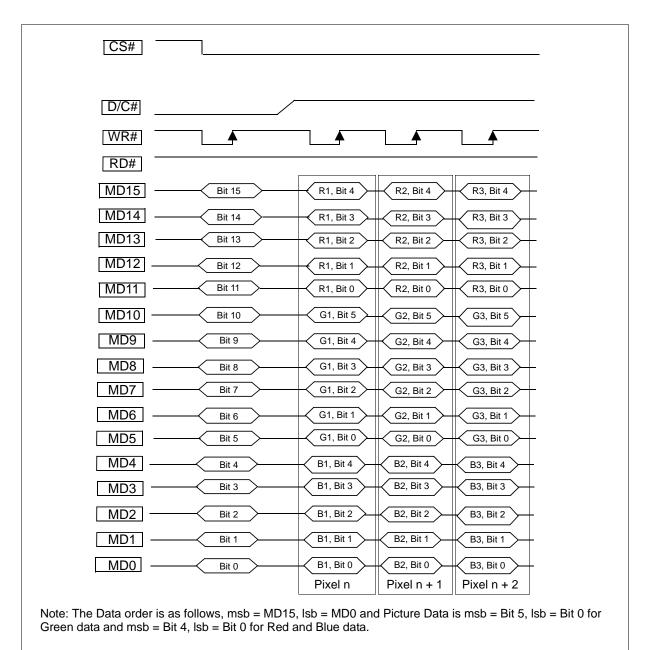
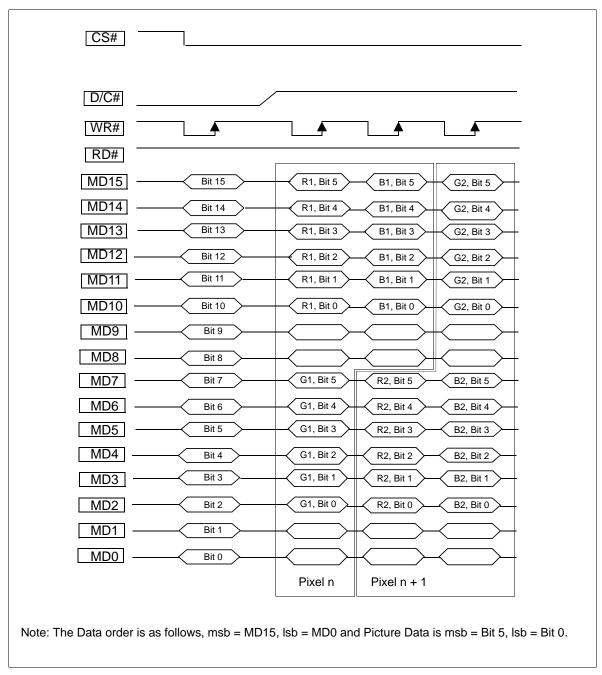
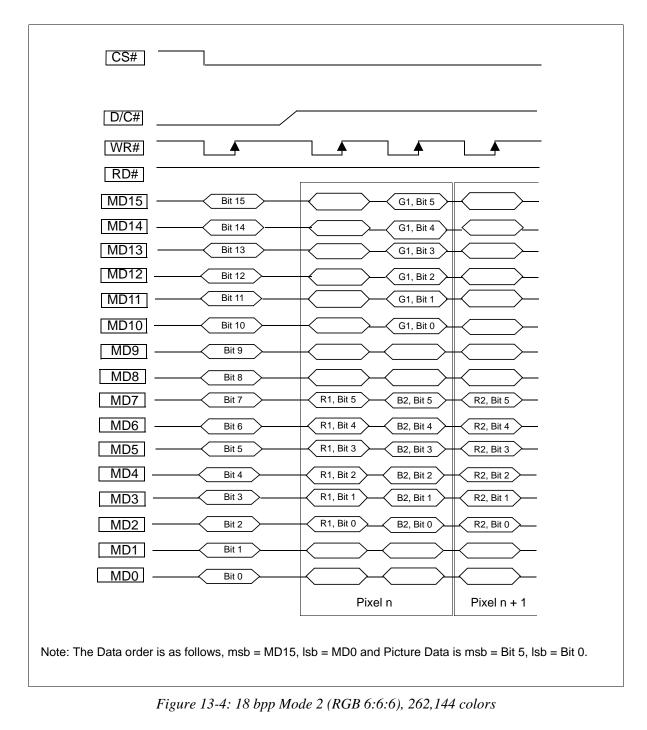



Figure 13-2: 16 bpp (RGB 5:6:5), 65,536 colors

13.3 18 bpp Mode 1 (RGB 6:6:6), 262,144 colors

When REG[60h] bits 3-0 = 0010b and CNF[1:0] = 11, the input data format for the Intel 80 Host interface is RGB 6:6:6 mode 1.


Figure 13-3: 18 bpp Mode 1 (RGB 6:6:6), 262,144 colors

S1D13746

X74B-A-001-02

13.4 18 bpp Mode 2 (RGB 6:6:6), 262,144 colors

When REG[60h] bits 3-0 = 0110b and CNF[1:0] = 11, the input data format for the Intel 80 Host interface is RGB 6:6:6 mode 2.

13.5 24 bpp Mode 1 (RGB 8:8:8), 16,777,216 colors

CS# D/C# WR# Ā RD# MD15 Bit 15 R1, Bit 7 B1, Bit 7 G2, Bit 7 MD14 R1, Bit 6 B1, Bit 6 G2, Bit 6 Bit 14 MD13 Bit 13 R1, Bit 5 B1, Bit 5 G2, Bit 5 MD12 Bit 12 R1, Bit 4 B1, Bit 4 G2, Bit 4 MD11 Bit 11 R1, Bit 3 B1, Bit 3 G2, Bit 3 R1, Bit 2 MD10 Bit 10 B1, Bit 2 G2, Bit 2 MD9 Bit 9 R1, Bit 1 B1, Bit 1 G2, Bit 1 MD8 Bit 8 R1, Bit 0 B1, Bit 0 G2, Bit 0 G1, Bit 7 Bit 7 R2, Bit 7 B2, Bit 7 MD7 G1, Bit 6 MD6 Bit 6 R2, Bit 6 B2, Bit 6 MD5 Bit 5 G1, Bit 5 R2, Bit 5 B2, Bit 5 MD4 Bit 4 G1, Bit 4 R2, Bit 4 B2, Bit 4 Bit 3 G1, Bit 3 B2, Bit 3 R2, Bit 3 MD3 MD2 Bit 2 G1, Bit 2 R2, Bit 2 B2, Bit 2 Bit 1 G1, Bit 1 MD1 R2, Bit 1 B2, Bit 1 MD0 Bit 0 G1, Bit 0 R2, Bit 0 B2, Bit 0 Pixel n Pixel n + 1 Note: The Data order is as follows, msb = MD15, lsb = MD0 and Picture Data is msb = Bit 7, lsb = Bit 0.

When REG[60h] bits 3-0 = 0011b and CNF[1:0] = 11, the input data format for the Intel 80 Host interface is RGB 8:8:8 mode 1.

Figure 13-5: 24 bpp Mode 1 (RGB 8:8:8), 16,777,216 colors

13.6 24 bpp Mode 2 (RGB 8:8:8), 16,777,216 colors

When REG[60h] bits 3-0 = 0111b and CNF[1:0] = 11, the input data format for the Intel 80 Host interface is RGB 8:8:8 mode 2.

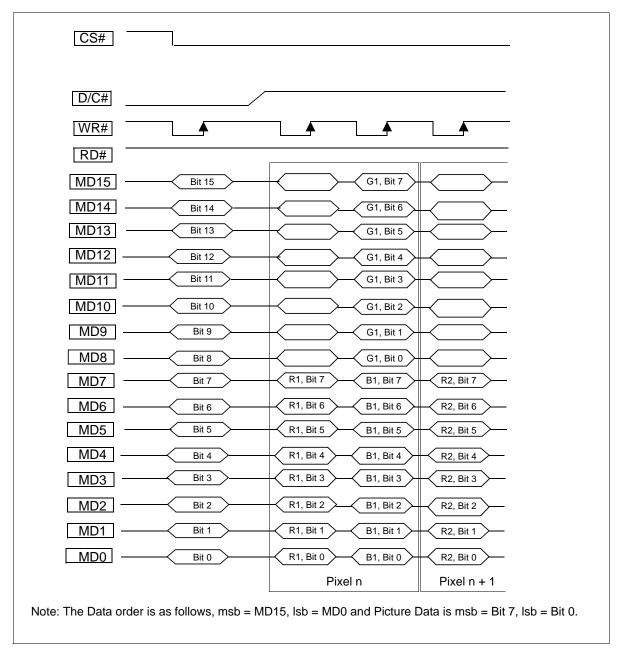


Figure 13-6: 24 bpp Mode 2 (RGB 8:8:8), 16,777,216 colors

14 YUV Timing

Format Definition

- The number of pixels per line is always even
- The YC_BC_R colorspace is defined in ITU-R BT601.4
- YUV 4:2:2 format $U_{11}Y_{11}V_{11}Y_{12}U_{13}Y_{13}V_{13}Y_{14}...$
- YUV 4:2:0 format Odd Line: UY₁₁Y₁₂... Even Line: VY₂₁Y₂₂...

Note

When a window is setup for YUV data, the data must always alternate between odd and even lines, starting with an odd line.

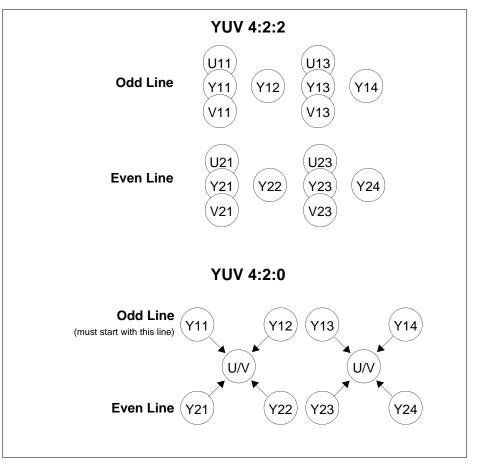


Figure 14-1: YUV Format Definition

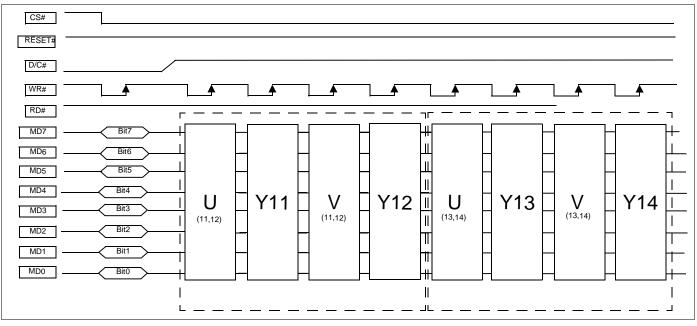


Figure 14-2: YUV 4:2:2 with Intel 80, 8-bit Interface

14.2 YUV 4:2:0 ODD Line with Intel 80, 8-bit Interface

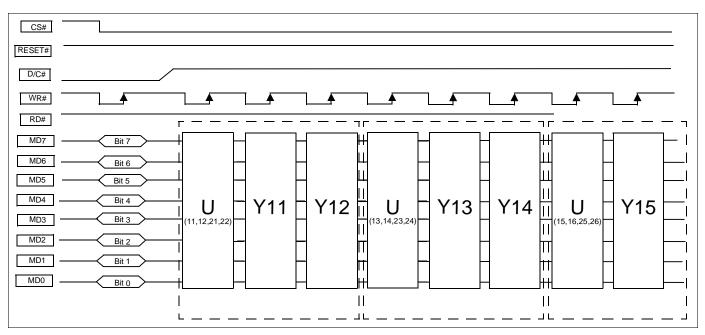
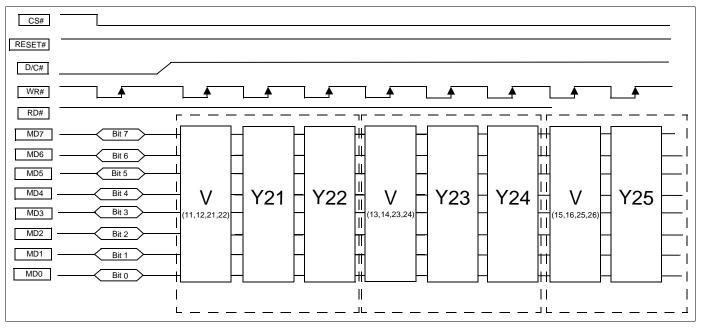
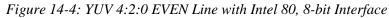
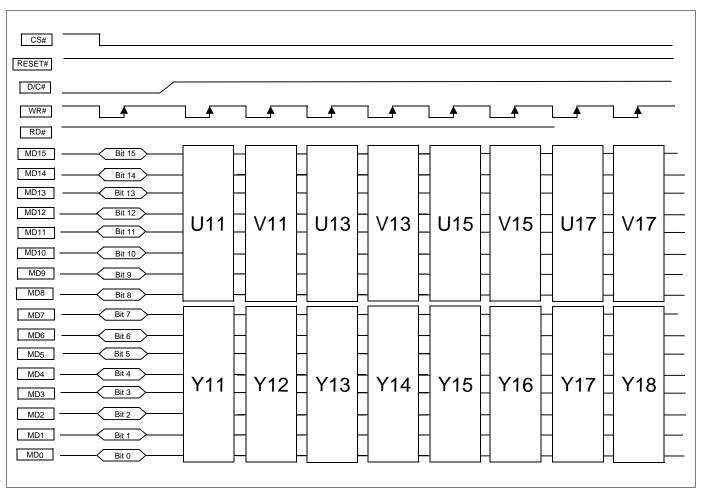
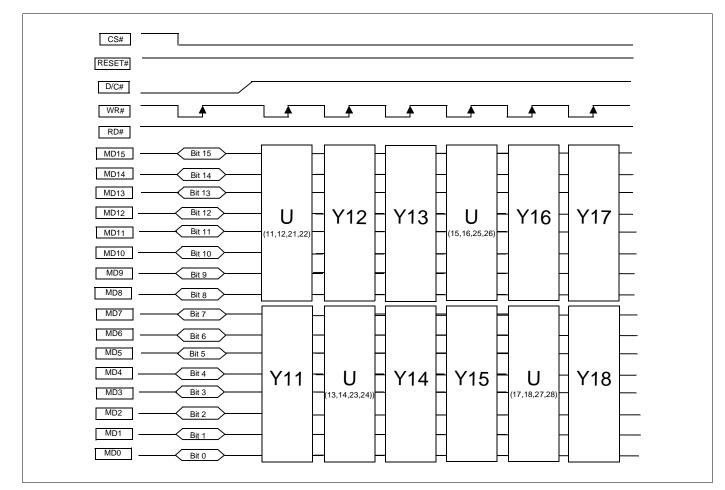
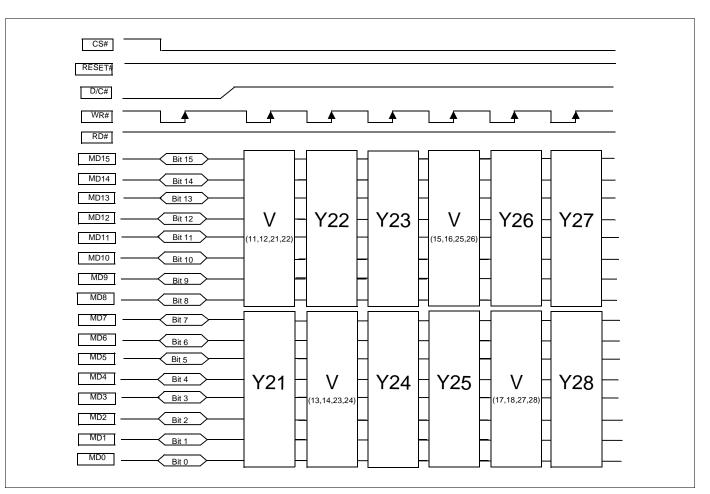





Figure 14-3: YUV 4:2:0 ODD Line with Intel 80, 8-bit Interface


14.3 YUV 4:2:0 EVEN Line with Intel 80, 8-bit Interface

14.4 YUV 4:2:2 with Intel 80, 16-bit Interface

Figure 14-5: YUV 4:2:2 with Intel 80, 16-bit Interface



14.5 YUV 4:2:0 ODD Line with Intel 80, 16-bit Interface

Figure 14-6: YUV 4:2:0 ODD Line with Intel 80, 16-bit Interface

Note

When using this mode, the input window width must be divisible by 4.

14.6 YUV 4:2:0 EVEN Line with Intel 80, 16-bit Interface

Figure 14-7: YUV 4:2:0 EVEN Line with Intel 80, 16-bit Interface

15 SwivelView[™]

15.1 SwivelView[™] Concept

Most computer displays are refreshed in landscape orientation – from left to right and top to bottom. Computer images are stored in the same manner. SwivelView is designed to rotate the displayed image on a TV by $90 \cdot , 180 \cdot ,$ or $270 \cdot$ in a counter-clockwise direction1 The rotation is done in hardware and is transparent to the user for all display buffer writes. By processing the rotation in hardware, SwivelView offers a performance advantage over software rotation of the displayed image.

The actual address translation is performed during the Host Write and the image data is, therefore, stored in memory in it's rotated orientation. Due to this design of the rotation logic, all windows written to the S1D13746 can be independently rotated with respect to each other.

15.2 90° SwivelView[™]

The following figure shows how the programmer sees a 320x480 portrait image and how the image is being displayed. The application image is written to the S1D13746 in the following sense: A–B–C–D. The display is refreshed in the following sense: B-D-A-C.

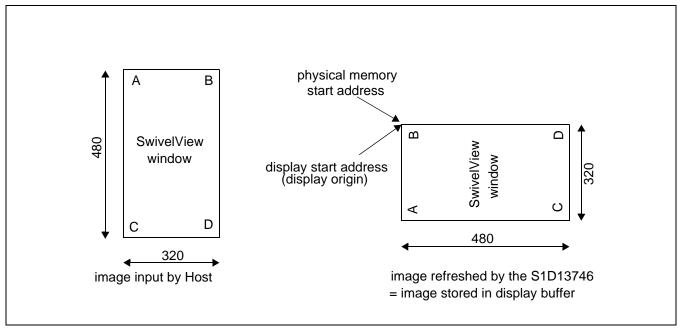


Figure 15-1: Relationship Between the Screen Image and the Image Refreshed in 90° SwivelView

15.2.1 Register Programming

There are no special programming requirements other than enabling the rotation (see REG[62h] bits 1-0). The start address and line offset are automatically calculated by the hardware.

15.3 180° SwivelView™

The following figure shows how the programmer sees a 480x320 landscape image and how the image is being displayed. The application image is written to the S1D13746 in the following sense: A–B–C–D. The display is refreshed in the following sense: D-C-B-A.

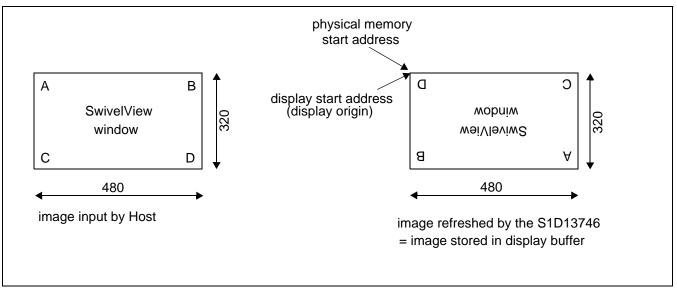


Figure 15-2: Relationship Between the Screen Image and the Image Refreshed in 180° SwivelView

15.3.1 Register Programming

There are no special programming requirements other than enabling the rotation (see REG[62h] bits 1-0). The start address and line offset are automatically calculated by the hardware.

15.4 270° SwivelView™

The following figure shows how the programmer sees a 320x480 portrait image and how the image is being displayed. The application image is written to the S1D13746 in the following sense: A–B–C–D. The display is refreshed in the following sense: C-A-D-B.

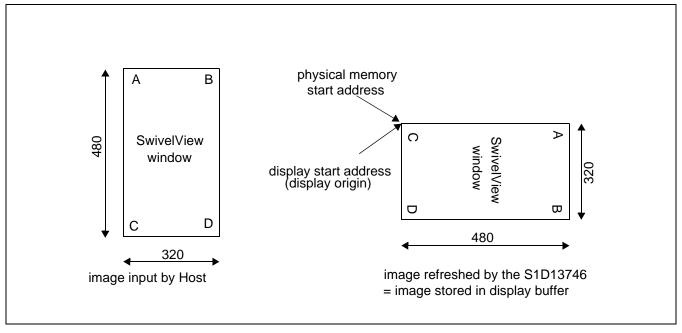


Figure 15-3: Relationship Between the Screen Image and the Image Refreshed in 270° SwivelView

15.4.1 Register Programming

There are no special programming requirements other than enabling the rotation (see REG[62h] bits 1-0). The start address and line offset are automatically calculated by the hardware.

15.5 Sub-Window Position / Rotation

In a typical environment, all windows are rotated in the same orientation. However, it is conceivable that individual windows require independent rotation. The examples below show all Use Cases with emphasis placed on the fact that window position is always based on top-left corner of the main display image and the top-left corner of the new window independent of their rotations.

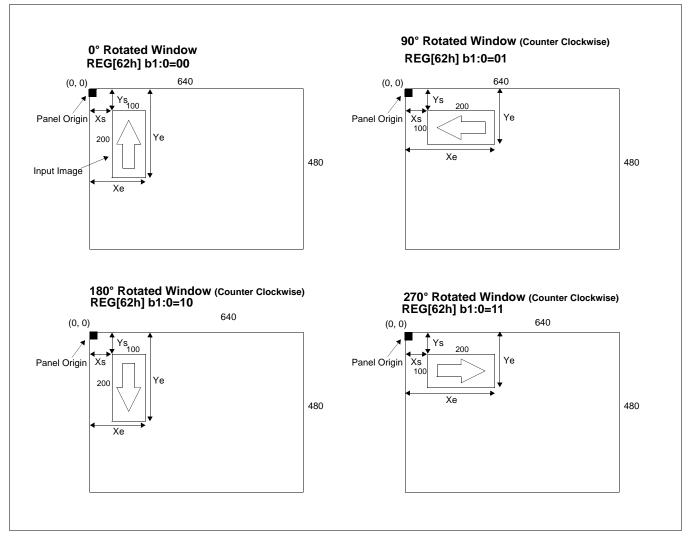


Figure 15-4: Sub-window position / rotation

Where:	
All rotations:	$Xs = REG[82h] \sim REG[84h]$
	$Ys = REG[86h] \sim REG[88h]$
0°, 180°:	Xe = Xs + Input Window Width (REG[68h] ~ REG[6Ah])
	Ye = Xs + Input Window Height (REG[64h] ~ REG[66h])
90°, 270°:	Xe = Xs + Input Window Height (REG[64h] ~ REG[66h])
	Ye = Xs + Input Window Width (REG[68h] ~ REG[6Ah])

16 Image Enhancement Engine

The Image Enhancement Engine (IEE) provides a 3x3 filter which allows the S1D13746 to manipulate images. When data is sent to the filter for processing, the data path is as follows.

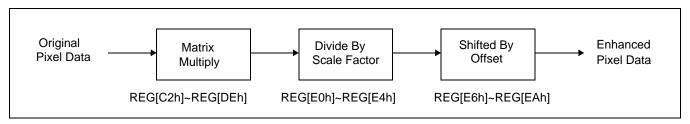


Figure 16-1 Image Enhancement Filter Overview

16.1 3x3 Filter

Note

SYSCLK must be 54MHz when 3x3 filter is enabled

The 3x3 filter function can manipulate each pixel in an image by calculating the intensity of neighboring pixels using a 3x3 matrix. The following figure describes the operation of the 3x3 filter.

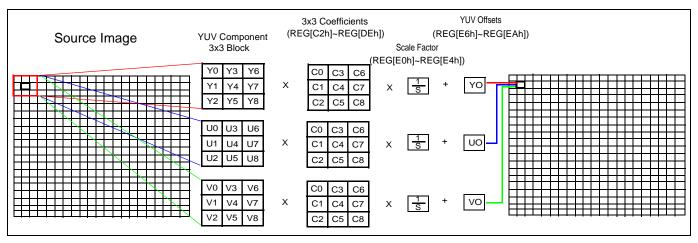


Figure 16-2: 3x3 Filter Matrix Function

The 3x3 filter scans through every pixel in an image and its neighboring pixels. Each YUV component block is calculated based on the programmable 3x3 coefficients (REG[C2h] ~ REG[DEh]), scaling rate (REG[E0h] ~ REG[E4h]), and offsets (REG[E6h] ~ REG[EAh]). The following figure provides some examples of the possible visual effects.

Note

For visual effect example programming values, see Section 16.1.1, "Example Programming Values" on page 142.

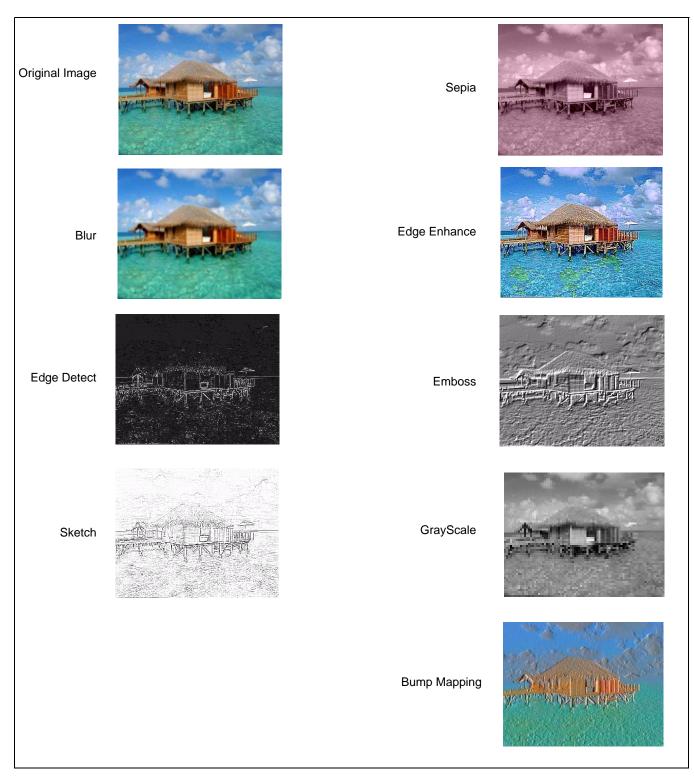


Figure 16-3: Filter Visual Effect Examples

16.1.1 Example Programming Values

The following table provides example values that can be used to achieve various visual effects using the 3x3 filter.

	Filter Functions										
Register Programming	Bypass (Default)	Sharp	Blur	Edge Detect	Sketch	Sepia	Edge Enhance	Emboss	Bump Mapping	Flicker Filter	Dot Crawl + Flicker Filter
Y0 REG[C2h] bits [2:0]	0h	7h	1h	7h	7h	0h	7h	1h	7h	0h	0h
Y1 REG[C2h] bits [6:4]	0h	7h	1h	7h	7h	0h	7h	1h	7h	0h	0h
Y2 REG[C4h] bits [2:0]	0h	7h	1h	7h	7h	0h	7h	0h	7h	0h	0h
Y3 REG[C4h] bits [6:4]	0h	7h	1h	7h	7h	0h	7h	1h	0h	1h	1h
Y4 REG[C6h] bits [4:0]	01h	09h	1h	08h	08h	01h	0Ah	00h	00h	02h	02h
Y5 REG[C8h] bits [2:0]	0h	7h	1h	7h	7h	0h	7h	7h	0h	1h	1h
Y6 REG[C8h] bits [6:4]	0h	7h	1h	7h	7h	0h	7h	0h	1h	0h	0h
Y7 REG[CAh] bits [2:0]	0h	7h	1h	7h	7h	0h	7h	7h	1h	0h	0h
Y8 REG[CAh] bits [6:4]	0h	7h	1h	7h	7h	0h	7h	7h	1h	0h	0h
U0 REG[CCh] bits [2:0]	0h	7h	1h	7h	0h	0h	0h	0h	0h	0h	0h
U1 REG[CCh] bits [6:4]	0h	7h	1h	7h	0h	0h	0h	0h	0h	0h	2h
U2 REG[CEh] bits [2:0]	0h	7h	1h	7h	0h	0h	0h	0h	0h	0h	0h
U3 REG[CEh] bits [6:4]	0h	7h	1h	7h	0h	0h	0h	0h	0h	1h	1h
U4 REG[D0h] bits [4:0]	01h	09h	01h	08h	00h	00h	01h	00h	01h	02h	02h
U5 REG[D2h] bits [2:0]	0h	7h	1h	7h	0h	0h	0h	0h	0h	1h	1h
U6 REG[D2h] bits [6:4]	0h	7h	1h	7h	0h	0h	0h	0h	0h	0h	0h
U7 REG[D4h] bits [2:0]	0h	7h	1h	7h	0h	0h	0h	0h	0h	0h	2h
U8 REG[D4h] bits [6:4]	0h	7h	1h	7h	0h	0h	0h	0h	0h	0h	0h
V0 REG[D6h] bits [2:0]	0h	7h	1h	7h	0h	0h	0h	0h	0h	0h	0h
V1 REG[D6h] bits [6:4]	0h	7h	1h	7h	0h	0h	0h	0h	0h	0h	2h
V2 REG[D8h] bits [2:0]	0h	7h	1h	7h	0h	0h	0h	0h	0h	0h	0h
V3 REG[D8h] bits [6:4]	0h	7h	1h	7h	0h	0h	0h	0h	0h	1h	1h
V4 REG[DAh] bits [4:0]	01h	09h	01h	08h	00h	00h	01h	00h	01h	02h	02h
V5 REG[DCh] bits [2:0]	0h	7h	1h	7h	0h	0h	0h	0h	0h	1h	1h
V6 REG[DCh] bits [6:4]	0h	7h	1h	7h	0h	0h	0h	0h	0h	0h	0h
V7 REG[DEh] bits [2:0]	0h	7h	1h	7h	0h	0h	0h	0h	0h	0h	2h
V8 REG[DEh] bits [6:4]	0h	7h	1h	7h	0h	0h	0h	0h	0h	0h	0h
YD (REG[E0h])	01h	01h	09h	01h	01h	01h	02h	01h	01h	04h	04h
UD (REG[E2h])	01h	01h	09h	01h	01h	01h	01h	01h	01h	04h	08h
VD (REG[E4h])	01h	01h	09h	01h	01h	01h	01h	01h	01h	04h	08h
YO (REG[E6h])	00h	00h	00h	00h	75h	00h	00h	40h	40h	00h	00h
UO (REG[E8h])	00h	00h	00h	40h	40h	30h	00h	40h	00h	00h	00h
VO (REG[EAh])	00h	00h	00h	40h	40h	49h	00h	40h	00h	00h	00h

Table 16-1: 3X3 Pixel Matrix Filter Function Programming Values

17 Host Interface

17.1 Using the Intel 80 Interface

Accessing the S1D13746 through the Intel 80 host interface is a multiple step process. All Registers and Memory are accessed through register space.

Note

- 1. All Register accesses are 8-bit only, except for the Display Memory Data Port. If the Host interface is 16-bits wide (CNF[1:0] = 11b), the lsbs (MD[7:0]) are used for all registers except the Display Memory Data Port.
- 2. For the Display Memory Data Port (REG[A0h]), all 16 bits are used when the Host interface is 16-bits wide (CNF[1:0] = 11b) and only the lower 7 bits are used when the Host interface is 8-bits wide (CNF[1:0] = 01b).

First, perform a single "Address Write" to setup the register address. Next, perform a "Data Read/Write" to specify the data to be stored or read from the registers or memory specified in the "Address Write" cycle. Subsequent data read/writes without an address write to change the register address, will automatically "auto" increment the register address, or the internal memory address if accessing the Display Memory Data Port (REG[A0h]), or TV Filter Coefficient and User Clock Ratio Data register (REG[56h]), or Macrovision Data register (REG[5Ah].

To write display data to a window aperture, specify the window size and coordinates followed by the burst data writes to the Display Memory Data Port required to fill the window. In this sequence, the internal memory addressing is automatic (see examples).

Page 143

17.1.1 Register Write Procedure

Writing to the S1D13746 registers is a two step process. First the register "index", or address, must be written. This is followed by the "data" to be placed in the specified register.

- 1. Perform an address write to setup the register address bits 7-0.
- 2. Perform a data write to update the register.
- 3. Additional data writes can be performed as the register addresses will be auto incremented.

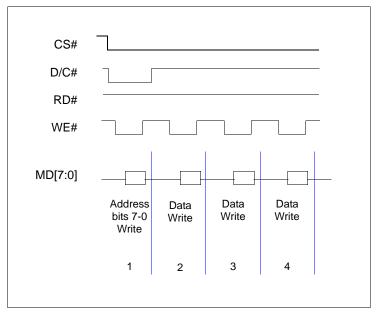


Figure 17-1: Register Write Example Procedure

17.1.2 Register Read Procedure

Reading from the S1D13746 registers is a two step process. First the register "index", or address, must be written. Then the "data" can be read from the specified register.

- 1. Perform an address write to setup the register address bits 7-0.
- 2. Perform a data read to get the value of the specified register.
- 3. Additional data reads can be performed as the register addresses will be auto incremented.

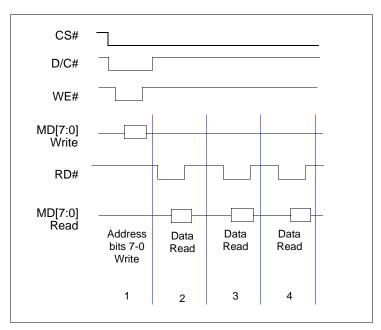


Figure 17-2: Register Read Example Procedure

17.1.3 Sequential Memory Write Procedure

The S1D13746 display memory is written to using the Display Memory Data Port register, REG[A0h]. Once the "index" of the Display Memory Data Port register is written, display data can be burst written to display memory. After each memory write is completed, the internal memory address is automatically incremented.

- 1. Write to window parameters specified in registers, REG[60h] ~ REG[6Ah] and REG[82h] ~ REG[90h].
- 2. Perform an address write to setup the Display Memory Data Port address (REG[A0h]).
- 3. Perform a data write to display memory.
- 4. The internal memory address is automatically incremented allowing further data writes to display memory.

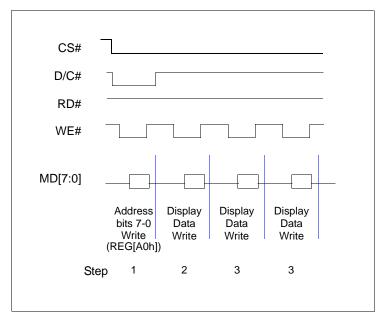


Figure 17-3: Memory Burst Write Example Procedure

Note

Interrupting an image frame write with a register write will reset the frame. After any register write operation, the user must write the entire frame over again.

17.2 Serial Host Interface

The S1D13746 Serial Host Interface supports the following interfaces:

- 3-Wire Serial Interface (9-bit), CNF[1:0] = 00
- 4-Wire Serial Interface (8-bit SPI Interface), CNF[1:0] = 10

17.2.1 3 Wire 9-bit

The 3 wire 9-bit serial interface is selected when CNF[1:0] = 00. The 3 wire 9-bit serial interface consists of a Chip Select (CS#), Serial Clock (SCLK), and a Bi-directional Data pin (SDA). The S1D13746 has a Serial Data Out (SO) pin and a Serial Data In (SI) pin which can be connected together to form the Bi-Directional data pin.

Write and Read Transfers

The following shows the format for a 3-Wire Serial Interface Write Transfer. The first bit of the Command is the D/C# bit which is set to 0b to indicate that it is a Command. The 8 bits, C[7:0] representing the Command, are then sent with the msb first. After the Command, the D/C# bit is set to 1b to indicate that the Data will now be sent. The 8 bits of Data are sent with the msb first. SI is valid on the rising edge of SCLK.

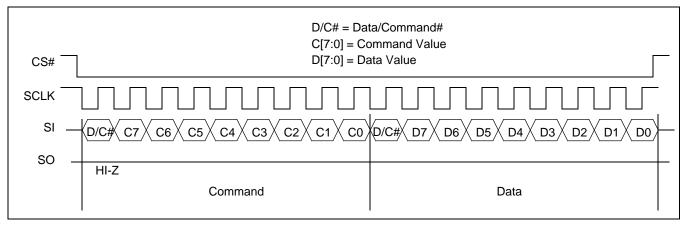


Figure 17-4: Write Transfer

The following figure shows the format for a 3-Wire Serial Interface Read Transfer. The first bit of the Command is the D/C# bit which is set to 0b to indicate that it is a Command. After that the 8 bits C[7:0] representing the Command are sent with the msb first. Then the S1Diard drives the S0 line and sends the 8 bits of data with the msb first. The S1D13746 will drive the line until the CS# goes high. SI is valid at the rising edge of SCLK. SO is launched at the falling edge of SCLK.

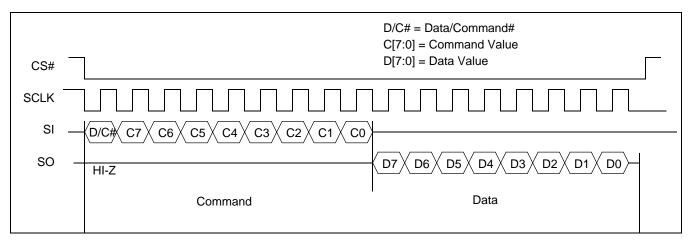
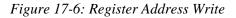
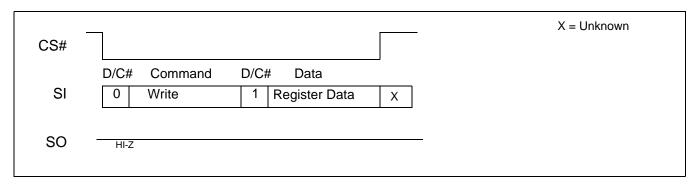
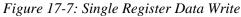


Figure 17-5: Read Transfer

Commands


Using the 3-Wire Serial Interface Read and Write Transfers the user can perform the following functions using the S1D13746:


- Set the Register Address to write to or read from
- Write Data to the Register Address
- Read Data from the Register Address
- Write to consecutive Register addresses.
- Read from consecutive Register addresses.


Command	and Value 3-Wire Serial Interface Transfer		Description
SET_ADDR	0x40	Write	Set the Register Address to access
WRITE	WRITE 0x80 Write		Write Data to the Register Address
READ	0xC0	Read	Read Data from the Register Address

In order to access a register in the S1D13746 the SET_ADDR Command must be sent first to set the Register Address to access.

CS#		X = Unknown
SI	D/C# Command D/C# Data 0 Set_Addr 1 Register Address x	
SO		

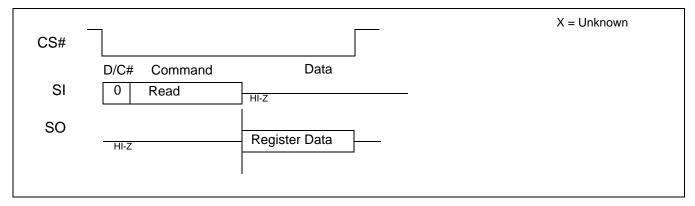


Figure 17-8: Register Data Read

Data can be written to or read from consecutive addresses. After each Data is written or read, the internal Register Address is incremented by 2 to the next address as long as the CS# remains low. For Writes the D/C# bit must precede the Data for each transfer. For Reads the S1D13746 will only send 8 bits of Data for each transfer.

CS#]								X = Unknown	
	D/C#	Command	D/C#	# Data	D/C#	# Data		D/C;	# Data	
SI	0	Write	1	Register Data	1	Register Data		1	Register Data	Х
		Register Address	s ->	Addr		Addr +2	_		Addr + n	
SO	HI-Z									
							1 1			

Figure 17-9: Multiple Register Data Writes

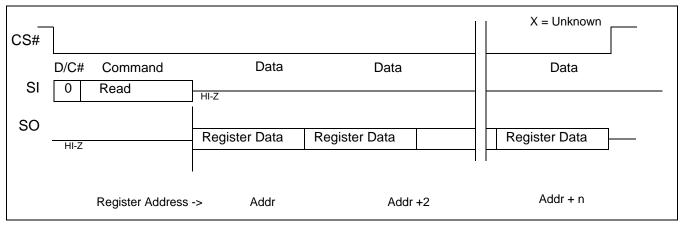


Figure 17-10: Multiple Register Data Reads

The 4 wire 8-bit serial interface (SPI) is selected when CNF[1:0] = 10b. The SPI interface is comprised of a Chip Select (CS#), Serial Clock (SCLK), Serial Data Out (SO), and a Serial Data In (SI).

SPI Write and Read Transfers

For the SPI Write Transfer the Command C[7:0] is sent after the CS# goes low with the msb first. Following this the Data D[7:0] is sent with the msb first. As long as the CS# is held low then the SO line is driven. SI is valid at the rising edge of SCLK.

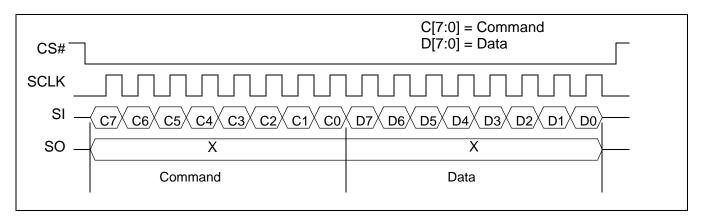


Figure 17-11: SPI Write Transfer

For the SPI Read Transfer the Command C[7:0] is sent after the CS# goes low with the msb first. Following this, the S1D13746 will now send the Data D[7:0] on the SO line with the msb first. During this phase any value on the SI line is ignored. As long as the CS# is held low then the SO line is driven. SI is valid at the rising edge of SCLK. SO is launched at the falling edge of SCLK.

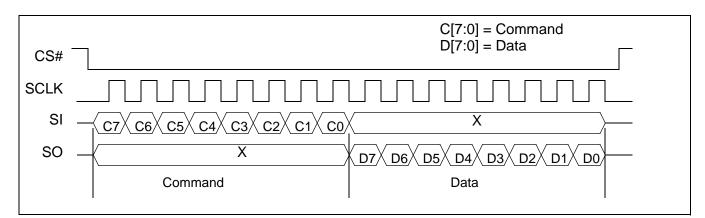


Figure 17-12: SPI Read Transfer

SPI Commands

Using the SPI Read and Write Transfers the user can perform the following functions using the S1D13746:

- Set the Register Address to write to or read from
- Write Data to the Register Address
- Read Data from the Register Address
- Write to consecutive Register addresses.
- Read from consecutive Register addresses.

Table 17-2: SPI Commands

Command	Value	Description
SET_ADDR	0x40	Set the Register Address to Write to
WRITE	0x80	Write Data to the Register Address
READ	0xC0	Read Data from the Register Address

In order to access a register in the S1D13746 the SET_ADDR Command must be sent first to set the Register Address to access.

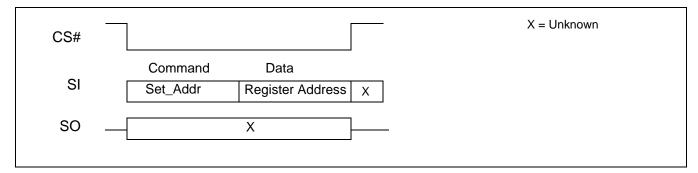


Figure 17-13: Register Address Write

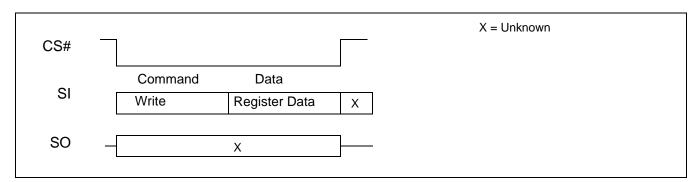


Figure 17-14: Single Register Data Write

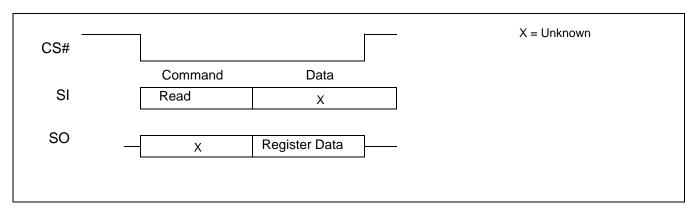


Figure 17-15: Single Register Data Read

Data can be written to or read from consecutive addresses. After each Data is written or read, the internal Register Address is incremented by 2 to the next address as long as the CS# remains low.

]			1	X = Unknown		
CS#							
	Command	Data	Data		Data		
SI	Write	Register Data	Register Data		Register Data	Х	
	Register Address	-> Addr	Addr +2		Addr + n		
SO –							-

Figure 17-16: Multiple Register Data Writes

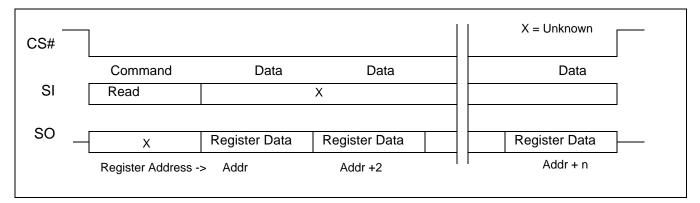


Figure 17-17: Multiple Register Data Reads

18 Parallel RGB Interface Input

When the Parallel RGB Interface input is enabled using the CNF setting, the Host Input Size registers are automatically determined from the Parallel RGB Interface timing. The Display Output Size registers are programmed using a serial interface.

In a typical Parallel RGB Interface implementation, the Input Scaler and Display Output Scaler are only set once after power-up. Since the Host Input Size is always the same (same as the Parallel RGB display resolution), these settings should suffice for all further operation.

The RGB Parallel Interface accepts 18-bit RGB Data along with a Horizontal Sync, Vertical Sync, and a Data Enable signal. The RGB data is fed directly to the TV.

Note

When the Parallel RGB interface is selected, the following restrictions must be met or the Double-Buffer should not be used.

... The input frame rate must be smaller than half of the output (display frame rate).

... The input data burst must be shorter than the output frame period.

18.1 Width and Height Auto Detect

The RGB Parallel Interface can Auto Detect the Width and Height of the input image. By default the Auto Detect is enabled. If the RGB Parallel Interface detects 10 frames of the same height then it will set the Input Size registers with the width and height and will output the 11th frame and every frame thereafter to the TV.

If the Host writes to any of the Input Size registers, Auto Detect is disabled and any image data written after is immediately sent to the TV.

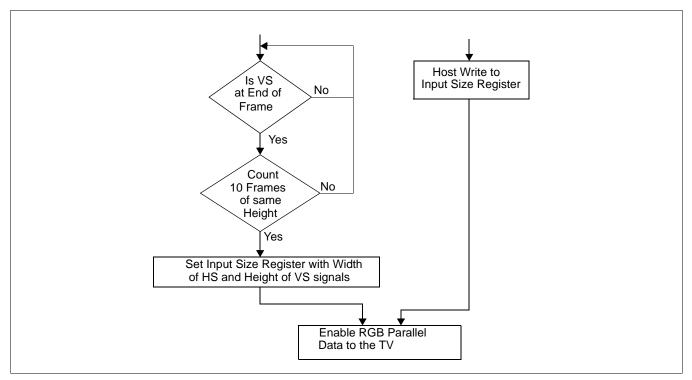


Figure 18-1: Width and Height Auto Detect Flow

19 VBI and Wide-Screen Signalling Function

The S1D13746 supports four VBI/WSS standards:

- ETSI EN 300 294
- ITU-R BT1119-2
- IEC 61880
- CEA-608-B

The above standards specify a method of sending digital information to a TV receiver capable of decoding such data during the Vertical Blanking Interval (VBI) period of the TV output.

The particular line number which the VBI signalling is inserted into depends on the TV output standard. Refer to Table 19-1: "VBI Position" for more information.

The line sequence is referenced to the ITU-R BT.470-6 for 625-line systems (PAL-B/D/G/H/I/N/Nc) and SMPTE for 525-line systems (PAL and NTSC-M).

				TV Standard		
			NTSC (525 Lines)	PAL-M (525 Lines)	PAL - others (625 Lines)	Comments
		Line pos	—	—	23	WSS only.
	ETSI EN 300 294 V1.4.1	Bits	—	—	14	Specified for 625 Line System only
		Coding	—	—	Bi-phase	Similar to BT.1119-2
	ITU-R BT.1119-2	Line Pos	ine Pos 22 and 285 22 and 285 23			WSS only
-	(Implemented in April	Bits	24	24 24 14		For PAL-M, not specified (behaves
Standard	2004)	Coding	NRZ+ SC Modulate	NRZ+ SC Modulate	Bi-phase	as 525 Lines system: NTSC)
		Line Pos	20 and 283	—	—	
VBI	CEI 61880	Bits	20			WSS+CMGS+APSFor PAL, not specified
		Coding	NRZ			
		Line Pos	21/284		22/335	Closed Caption & Extended Data
	CEA-608-B	Bits	14x2 (2x7x2)		14x2 (2x7x2)	Service (WSS+CMGS+APS)
		Coding	NRZ	_	NRZ	For PAL, not specified For PAL-M, not specified

Table 19-1: VBI Position

For the ETSI EN 300 294, ITU-R BT1119-2, and IEC 61880, the VBI data is sent out on the above specified line. The VBI data is programmed in REG[42h] ~ REG[48h] and the register bit mapping is specified in the register description.

For CEA-608-B, the standard defines a protocol for sending VBI data, there are two modes of operation as specified in REG[4Ah] bit 1.

- Auto WSS + CGMS + APS
- Manual mode

19.1 CEA-608-B Auto Mode

In Auto Mode, the data programmed into registers REG[42h] ~ REG[48h] is sent out repeatedly as conforming to the protocol outlined in the standard on field 2 (line 284 or 385). In this mode, only information as listed in the register bit mapping of the registers REG[42h] ~ REG[48h] is supported.

The CEA-608-B data is sent out as 16-bit binary sequence (lsb first) on field 2 of the specified VBI line for 8 consecutive TV frames (16 fields). During the CEA-608-B data transmission, field 1 of the specified line contains zero data. During the CEA-608-B data transmission, field 2 contains formatted data as outlined in Table 19-2: "CEA-608-B Auto WSS + CGMS + APS Data Format," on page 157.

Note

The CEA-608-B data on Field 1 (line 21/22) for CEA-608-B Auto Mode will always contain zero data dummy packet.

The refresh rate of VBI data is determined by REG[48h] bits 2-0 as defined in the register description.

	Bit												Character						
	0	1	2	3	4	5	6	Parity	1 [0	1	2	3	4	5	6	Parity	Byte 0	Byte 1
XDS Start Current Program: Aspect Ratio Information	1b	0b	0b	0b	0b	0b	0b	0b		1b	0b	0b	1b	0b	0b	0b	1b	01h	89h
Aspect Ratio Information Start/End Line	S0	S1	S2	S3	S4	S5	1b	xb		E0	E1	E2	E3	E4	E5	1b	xb	REG[42h] bits [5:0]	REG[44h] bits [3:0] REG[42h] bits [7:6]
Aspect Ratio Information: Other	Q0	xb	xb	xb	xb	xb	1b	xb		0b	0b	0b	0b	0b	0b	0b	1b	REG[44] bit 4	80h
End and Checksum	1b	1b	1b	1b	0b	0b	0b	1b	1 [xb	xb	xb	xb	xb	xb	xb	xb	8Fh	Checksum Byte
XDS Start Current Program: CGMS (Analog)	1b	0b	0b	0b	0b	0b	0b	0b		1b	0b	0b	1b	0b	0b	0b	1b	01h	08h
CGMS (Analog)	ASB	APS B0	APS B1	CGMS -A B0	CGMS -A B1	0b	1b	xb		Note 1	Note 1	Note 1	Note 1	Note 1	Note 1	Note 1	1b	REG[46h] bits [1:0] REG[44h] bits [7:5]	REG[46h] bits [7:2]
End and Checksum	1b	1b	1b	1b	0b	0b	0b	1b	1 [xb	xb	xb	xb	xb	xb	xb	xb	8Fh	Checksum Byte
Zero Data Dummy	0b	0b	0b	0b	0b	0b	0b	1b		0b	0b	0b	0b	0b	0b	0b	1b	80h	80h

 Table 19-2: CEA-608-B Auto WSS + CGMS + APS Data Format

Note

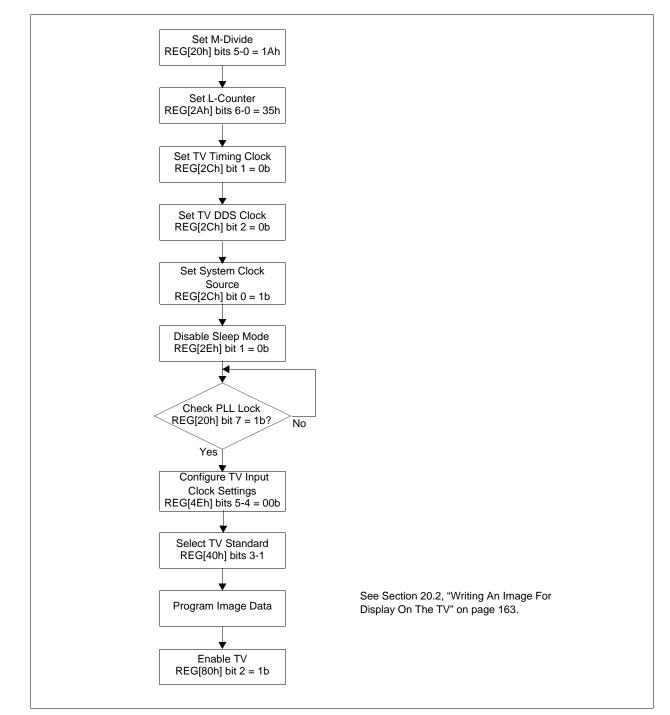
1. This bit is Reserved

19.2 CEA-608-B Manual Mode

The host has direct control of the VBI data and timing. Therefore, the user can support sending any type of data to conform with the CEA-608-B standard. In this mode, the host programs registers REG[42h] ~ REG[48h] only during the TV frame vsync time, so that the data will be sent out on the beginning of the upcoming field. This is accomplished by polling REG[4AEh] bit 4. After programming the data the host can trigger the VBI data to output on the specified field by writing a 1b to REG[4Ah] bit 3 and/or bit 2.

20 Typical Use Case Descriptions

20.1 Initializing the S1D13746


The S1D13746 is initialized based on the frequency of the input clock used for CLKI. CLKI is used as the source for the PLL and also can be used as the source for the TV Timing clock and the TV DDS clock. For further details on the S1D13746 clocks, see Section 9, "Clocks" on page 59.

The following steps are required to initialize the S1D13746.

- set the M-Divide which control the divide ratio between the CLKI input and the input clock to the PLL
- set the L-Counter which determines the output frequency of the PLL, in MHz
- set the TV Timing clock source
- set the TV DDS clock source
- disable sleep mode
 - The PLL must be correctly configured before disabling sleep mode
- check whether the PLL output is stable
 - This step must be performed before the synchronous registers can be accessed
- select the TV input clock settings which configures the clocks required for the TV block
- program the image data for display on the TV (see Section 20.2, "Writing An Image For Display On The TV" on page 163)
- enable the TV interface

For a example programming flows, see Section 20.1.1, "Initialization Flow Charts" on page 160.

20.1.1 Initialization Flow Charts

Figure 20-1: Initializing the S1D13746 for CLKI = 27MHz

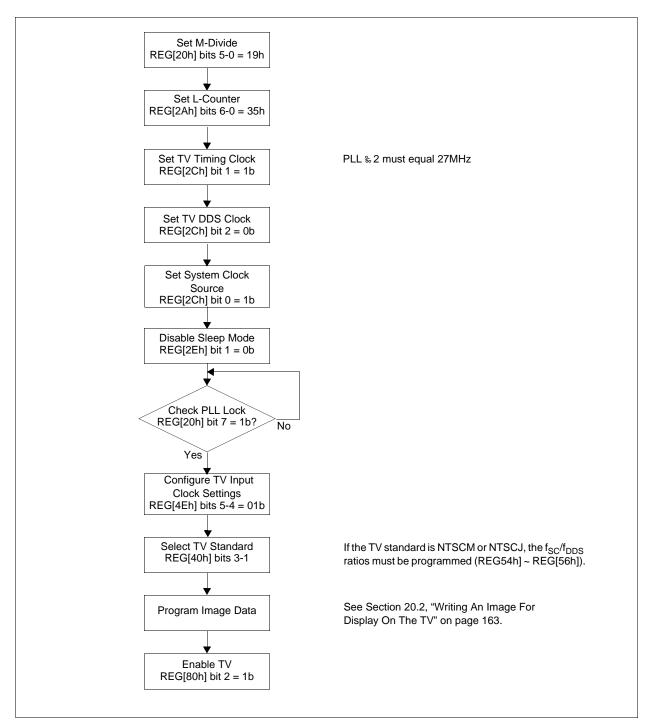


Figure 20-2: Initializing the S1D13746 for CLKI = 26MHz

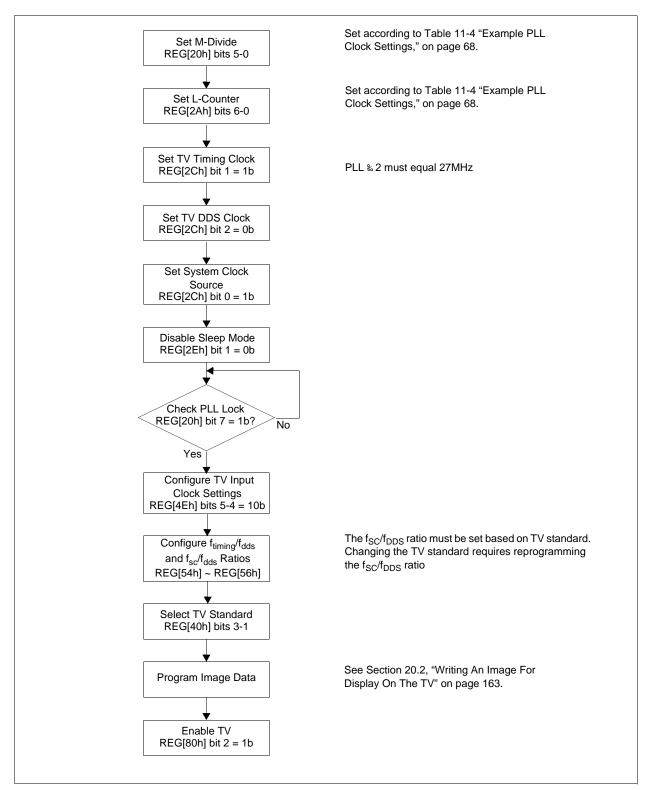


Figure 20-3: Initializing the S1D13746 for 18MHz f CLKI f 27MHz

20.2 Writing An Image For Display On The TV

If writing a single or multiple images on the display, one of them must be considered the "Background Image" (REG[62h] bit 5). The Input Scale Ratio is automatically calculated to allow this background image to fit in the available memory. All subsequent input images intended to be displayed on-top as overlays automatically use the same input scale ratio to maintain aspect with the background.

- set the Host Input Data Format
- set the Special Effects register as appropriate. If changing the Window Data Type from Streaming to Static while the double buffer remains enabled, then the Special Effects register should be set after the Host Input Size and Display Output Size and Positions registers.
 - Window Data Type
 - Background Image (if it is the background image, the automatic input scale ratio is latched and used for all subsequent images)
 - Double Buffer
 - Transparency
 - Window Rotation
- set the Host Input size
- set the Display Output Size/position accordingly
 - if the window being written is the background image, the Output position registers must be set to 0.
 - if the window being written is an overlay, the Output Height/Width registers are ignored.
 - if the window is the background and the Display Output Size does not equate to fullscreen resolution as determined by PAL or NTSC, a Border is automatically generated.
- write window data

20.3 Use Case Flowcharts

20.3.1 Host Write Background

The following flowchart provides an example method for programming a static background window. This method can be used to program the background image when initializing the device, or any time the entire background must be re-painted. If the background must be reprogrammed using different input/output coordinates, the display should be blanked before setting the new coordinates using the TV Display Blank bit, REG[80h] bit 3.

If a streaming background window is required, refer to Figure 20-6: "Streaming Background," on page 166.

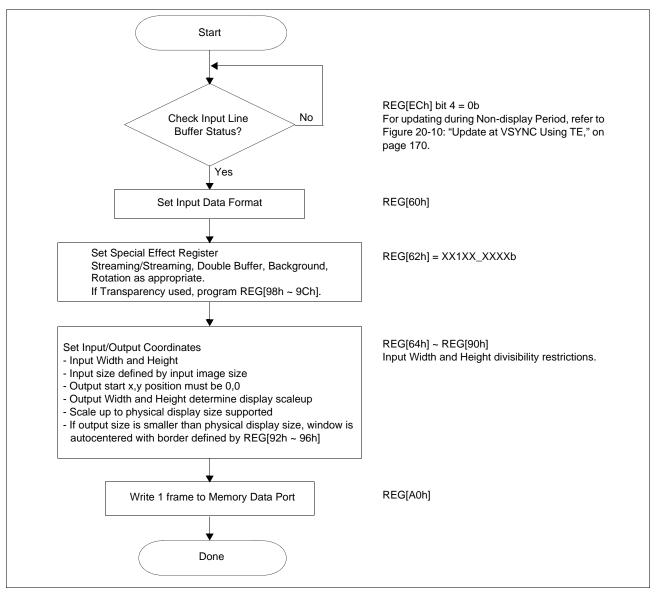


Figure 20-4: Host Write Background

The following flowchart provides an example method for programming a static overlay window. The background window should be configured and programmed before an overlay window is programmed, as the scaling ratio from the background window is also used to scale the overlay window.

If a streaming overlay window is required, refer to Section 20.3.4, "Background and Streaming Overlay" on page 167.

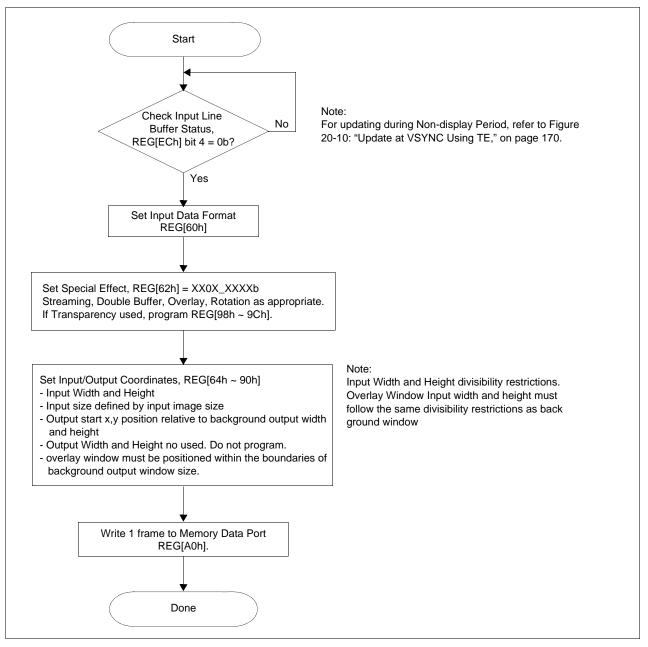


Figure 20-5: Host Write Overlay

20.3.3 Streaming Background

The following flowchart provides an example method for programming a streaming background window. This method should be used when the background image will be continually updated. If the background must be re-programmed using different input/output coordinates, the display should be blanked before setting the new coordinates using the TV Display Blank bit, REG[80h] bit 3.

If a static background window is required, refer to Figure 20-4: "Host Write Background," on page 164.

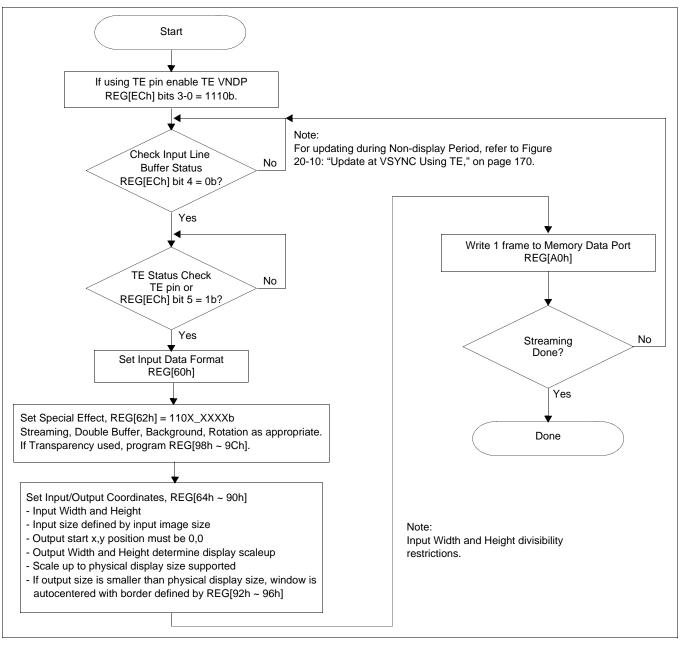
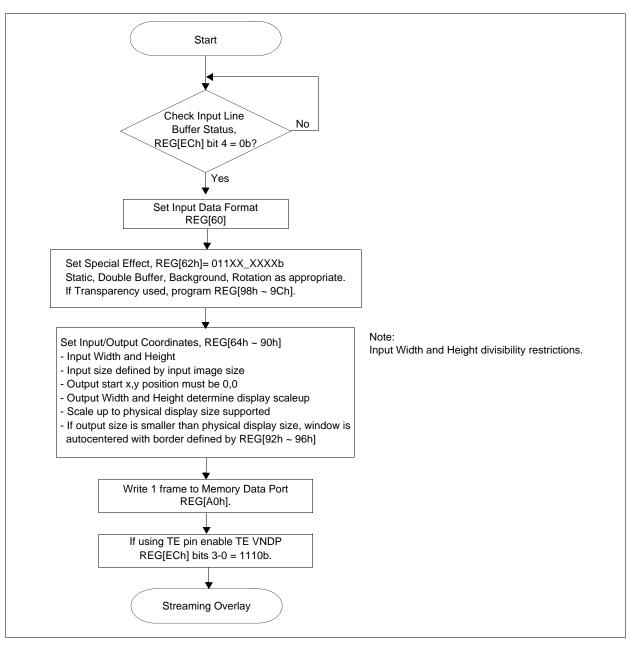



Figure 20-6: Streaming Background

20.3.4 Background and Streaming Overlay

The following flowchart provides an example method for programming a static background with a streaming overlay window.

Figure 20-7: Background and Streaming Overlay (Figure 1 of 3)

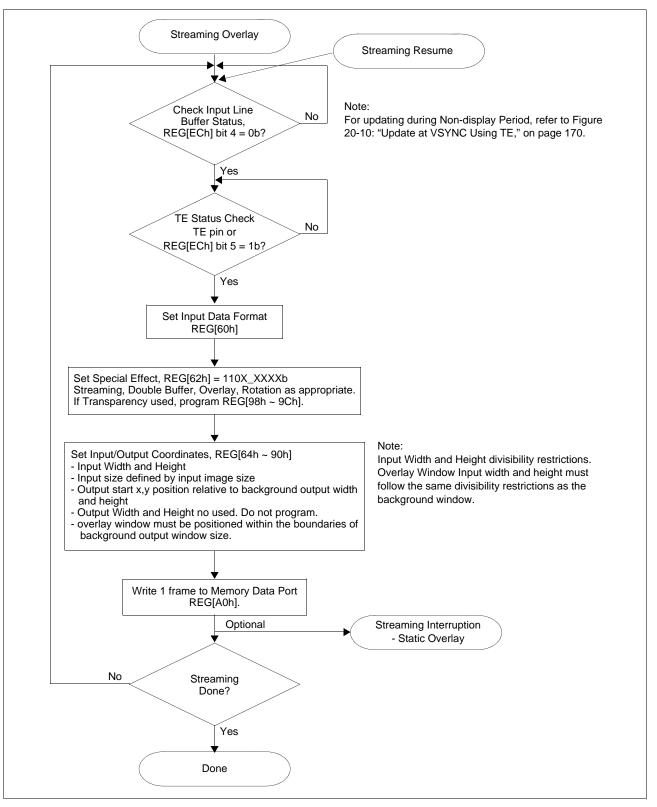


Figure 20-8: Background and Streaming Overlay (Figure 2 of 3)

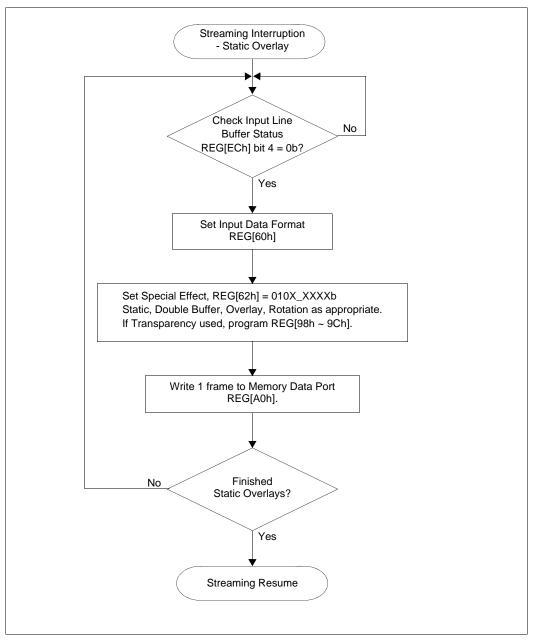


Figure 20-9: Background and Streaming Overlay (Figure 3 of 3)

20.3.5 Update at VSYNC Using TE

The following flowchart provides an example of how to use TE to perform updates during the VNDP. For further information on using TE and the various options available, refer to the bit descriptions in REG[ECh] (see Section 11.3.8, "Miscellaneous Registers" on page 114).

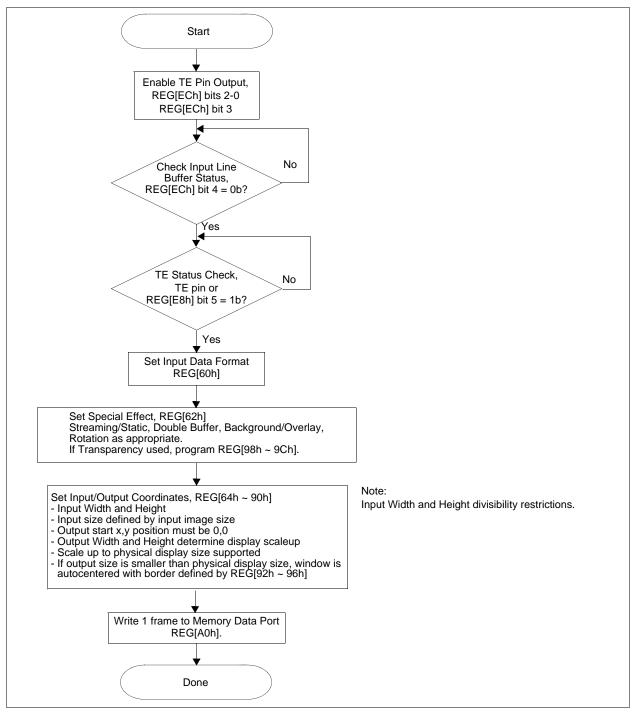


Figure 20-10: Update at VSYNC Using TE

20.4 Example: Enable a Double-Buffered Window on TV

This example shows how to open a destructive window and treat that window as doublebuffered to accept a streaming input. It will also show how that window can be disabled such that the User Interface (static background image) can be updated

Write Background Window

- set the Input Data Format
- set the Special Effects register as appropriate
 - Window Rotation
 - Double Buffer Enable = 1
 - Window Data Type = 0
- set the Host Input Size and Display Output Size/Position
- write the background window data
- wait for the Input Busy Status = 0

Write Streaming Window

- set the Input Data Format
- set the Special Effects register as appropriate
 - Window Rotation
 - Double Buffer Enable = 1
 - Window Data Type = 1
- set the Host Input Size and Display Output Position
- write the streaming window data continuously (must ensure Input Busy Status = 0 between frames)

Interrupt Streaming to Update Static Data

- set the Input Data Format
- set the Host Input Size and Display Output Position
- set the Special Effects register as appropriate
 - Window Rotation
 - Double Buffer Enable = 1
 - Window Data Type = 0
- write the static data
 - wait for Input Busy Status = 0

Continue Writing Streaming Data

- set the Input Data Format
- set the Special Effects register as appropriate
 - Window Rotation
 - Double Buffer Enable = 1
 - Window Data Type = 1
- set the Host Input Size and Display Output Position
- write the streaming window data continuously (must ensure Input Busy Status = 0 between frames)

Note

S1D13746 utilizes a double buffer architecture to prevent any visual tearing during streaming input. The active display pipe only reads from a buffer after it has been completely written. At this time, the host writes switches to the other buffer. If necessary, the TE output pin can be used in conjunction with double buffering to guarantee that no tearing will occur.

21 Double Buffer Description

Double buffering is provided to prevent tearing of streaming video data. All static (nonvideo) image data will always be written to Buffer 1 of the frame buffer. When video is being input, the frame will be written alternately between Buffer 2 and Buffer 1. While video data is being input, the static part of the image going to the TV will still always come from Buffer 1. The source of the streaming video window will come from either Buffer 1 or Buffer 2, depending on which one was the last to be completely updated.

When streaming video data, each time the user finishes writing a frame of video data, they should wait until the ILB (Input Line Buffer) is not busy and for the next vertical nondisplay period before writing the next frame. This can be accomplished by first polling ILB status (REG[EC] bit 4) and then using the TE pin or by polling the TE Status bit (REG[ECh] bit 5). Alternatively, if the user can guarantee that the maximum input video frame rate is one half the TV Field Rate (60Hz for NTSC and PAL-M, 50Hz for PAL) and that the burst length for writing a video frame is less than one TV Field Period, then no checking for the vertical non-display period is required.

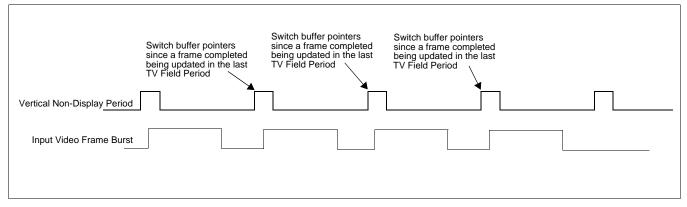


Figure 21-1: Double Buffer Streaming Timing - Recommended

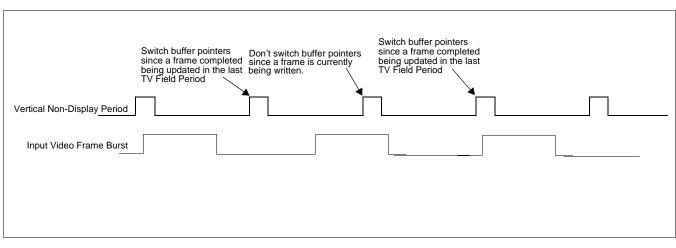


Figure 21-2: Double Buffer Streaming Timing - Not Recommended

To use the double buffer feature:

- Check the ILB Status, REG[EC] bit 4.
- Check TE VNDP Status, TE pin or REG[EC] bit 5.
- Set the Input Data Format REG[60].
- Set the Special Effects Register REG[62h] bits 7-6 to 11b.
- Setup the Host Window Size / Position registers (REG[64h] ~ REG[6Ah], REG[82h] ~ REG[90h].
- Write a frame of video data to the Memory Data Port REG[A0h].
- Repeat all check of ILB status and TE VNDP before writing each subsequent frame to Memory Data Port.

It is also possible to update a static window while double buffering is enabled, even in the middle of a video stream. To do this:

- Write the last pixel of the current frame of video data.
- Set the Special Effects Register REG[62h] bits 7-6 to 01b.
- Set the Input Data Format REG[60].
- Setup the Host Window Size / Position registers (REG[64h] ~ REG[6Ah], REG[82h] ~ REG[88h].
- Write the static data to the Memory Data Port REG[A0h].

This allows a static image to be written at any time, while still preventing the double buffered window from tearing. Once the static window has been written, the user can go back to writing the streaming video data by repeating the steps described above for using the double buffer feature.

21.1 Double Buffering Limitations

- When a streaming and static overlay window overlap and streaming is stopped, the streaming overlay window data will overwrite the static overlay window data if streaming is resumed.
- When a double buffered streaming overlay window is stopped and double buffering is disabled, the TV will display either the most recent frame or the previous frame to it.
- The user must either wait for a vertical non-display period between writing frames of video data, or guarantee that their maximum input frame rate is 1/2 the TV Field Rate (60Hz for NTSC and PAL-M, 50Hz for PAL) and that the length of time it takes to burst write a frame of video data is less than one TV Field Period.
- Only one window can be double buffered at a time.
- A double buffer streaming overlay window, requires the background window to be created with double buffer enabled.
- Input Line Buffer (ILB) Status must still be checked for idle before writing back to back frame data.

22 TV Filter Operation

The S1D13746 contains fixed and programmable digital filters to minimize noise in the TV luminance and chrominance signals. For the fixed filters setting (REG[52h] bit 2 = 0b), the function of the luminance filter depends on the current TV output type (REG[40h] bit 4) and the selected TV standard in REG[40h] bits 3-1.

For S-Video TV output, the fixed filter function for luminance is a 4MHz low pass filter. For Composite TV output, the fixed filter function for luminance is a notch filter at either 3.58 or 4.43 MHz depending on the TV standard setting (REG[40h] bits 3-1).

The fixed filter function for chrominance is a low pass filter with 1.5 dB attenuation at 1.3MHz and >20 db at 3.6 MHz.

The TV filters default functions will perform optimally in most cases. However, if the user wishes to optimize the filter performance further for their application, custom filter coefficients can be generated with generic FIR filter design software and programmed into indirect indexed registers REG[54h] and REG[56h].

22.1 Generating Custom Luminance (Y) and Color (UV) Filter Coefficients

The Luminance and Chrominance are symmetric FIR filters. The coefficient values can be positive or negative. See Figure 22-1: "15-Tap, Positive Symmetric Impulse Response," on page 176.

For symmetric impulse response, only 8 of the coefficients are needed to be programmed as the remaining 7 are a duplicate of the first 7.

Similarly, the chrominance is a 15-Tap FIR filter similar to Figure 22-1: "15-Tap, Positive Symmetric Impulse Response". For symmetric impulse response, only 8 of the coefficients are needed to be programmed as the remaining 7 are a duplicate of the first 7.

The coefficients are 2's complement and 9-bits wide.

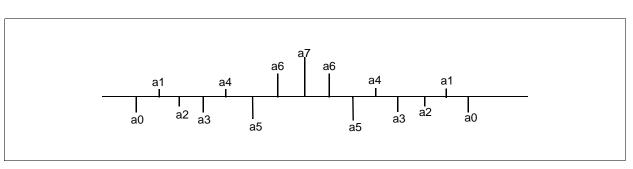


Figure 22-1: 15-Tap, Positive Symmetric Impulse Response

22.1.1 Filter Parameters

The following information is required in order to generate custom FIR filter values. However, it will depend on the users filter design software and is provided as a guide.

- type of filter: low pass, high pass, notch, band stop
- sample clock frequency: 13.5 MHz (fixed)
- number of taps: 15 (Y) and 15 (UV)
- upper pass band, i.e. 4 MHz
- stop band, i.e. 6.2 MHz
- pass band ripple, i.e. 3 dB
- stop band attenuation, i.e. 60 dB

The below response curves show the theoretical performance of the built-in fixed function TV filter.

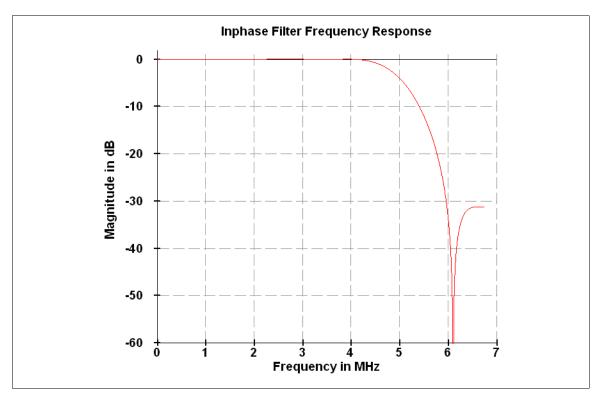


Figure 22-2: Frequency Response of Y 4MHz Low Pass Filter

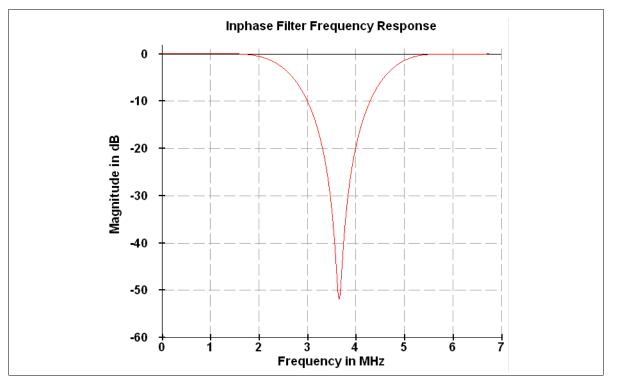


Figure 22-3: Frequency Response of Y Notch Filter @ 3.58MHz

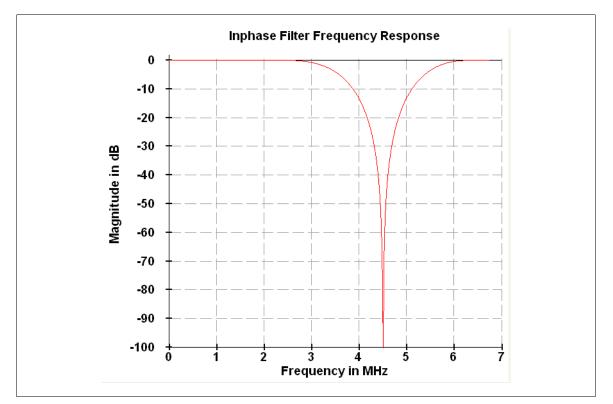


Figure 22-4: Frequency Response of Y Notch Filter @ 4.43MHz

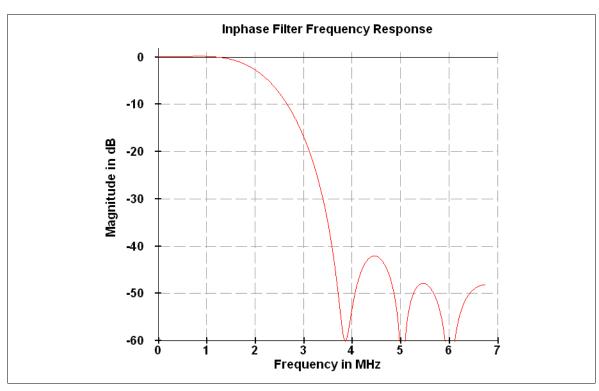


Figure 22-5: Frequency Response of UV Filter

23 Power Save Modes

The S1D13746 supports two power save modes: Sleep Mode and Standby Mode.

23.1 Sleep Mode

Sleep mode disables all internal blocks except the analog TV encoder block, which must be manually disabled before entering Sleep mode. This mode offers the lowest power consumption, but when Sleep mode is disabled the S1D13746 requires approximately 2.5ms before the PLL becomes stable. The S1D13746 should not be accessed during this period.

Sleep mode is controlled by the Sleep Mode Enable bit (REG[2Eh] bit 1) or the PWRSVE pin when REG[2Eh] bit 7 = 0b. For further details on Sleep Mode, refer to the bit description for REG[2Eh] bit 1 in Section 11.3.2, "Clock Configuration Registers" on page 66.

The following sequence is recommended for entering Sleep mode.

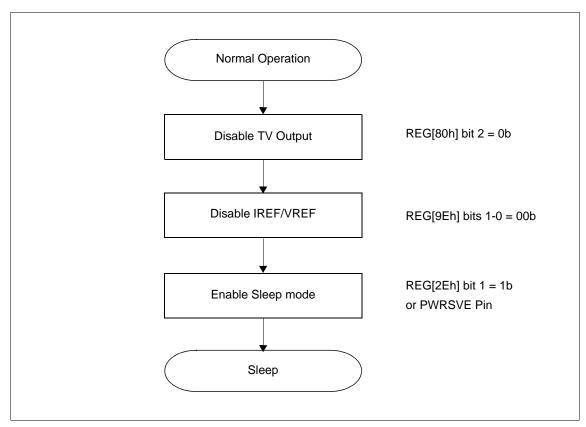
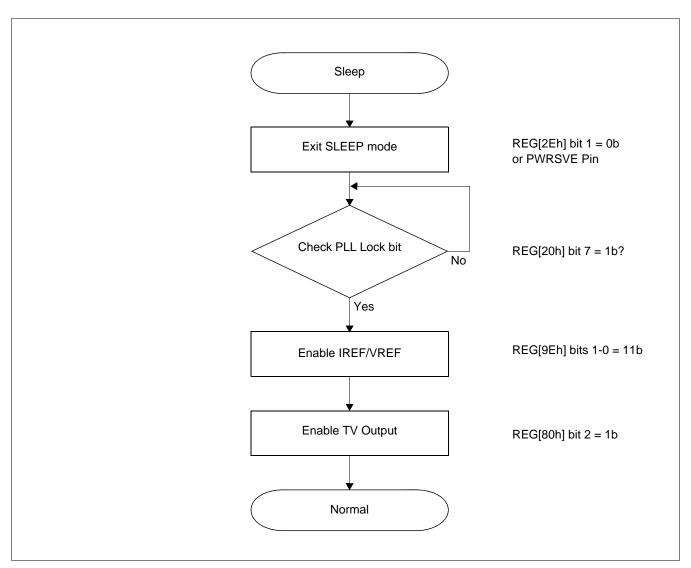



Figure 23-1: Recommended Sequence for Entering Sleep Mode

The following sequence is recommended for exiting Sleep mode.

Figure 23-2: Recommended Sequence for Exiting Sleep Mode

23.2 Standby Mode

Standby mode disables all internal blocks except the PLL and analog TV encoder blocks. The analog TV encoder block must be manually disabled before entering Standby mode. This mode offers the advantage of being able to access the S1D13746 immediately after disabling Standby mode.

Standby mode is controlled by the Standby Mode Enable bit (REG[2Eh] bit 0) or the PWRSVE pin when REG[2Eh] bit 7 = 1b. For further details on Standby Mode, refer to the bit description for REG[2Eh] bit 0 in Section 11.3.2, "Clock Configuration Registers" on page 66.

The following sequence is recommended for entering Standby mode.

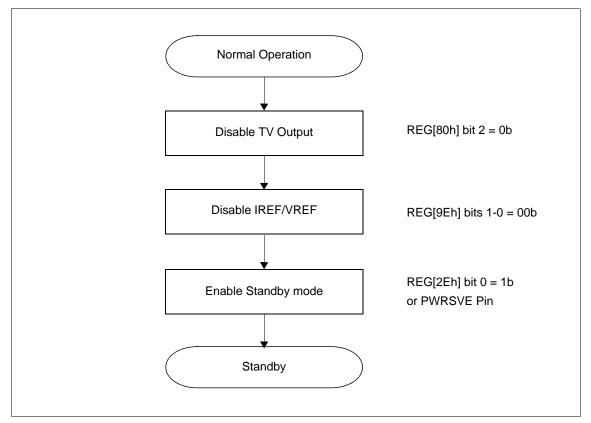
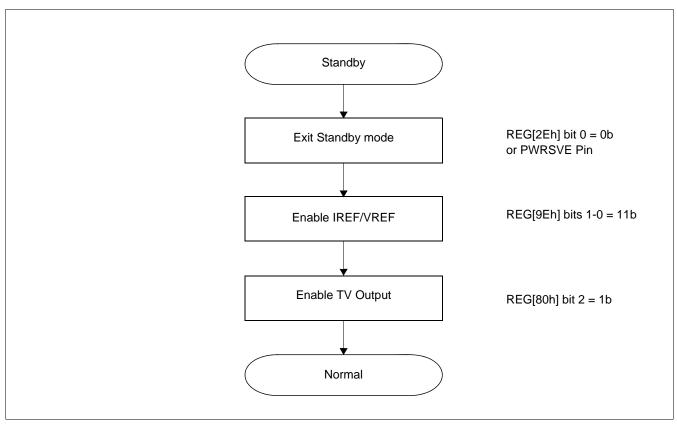



Figure 23-3: Recommended Sequence for Entering Standby Mode

The following sequence is recommended for exiting Standby mode.

Figure 23-4: Recommended Sequence for Exiting Standby Mode

24 External Components

24.1 DAC External Components

The following circuit is recommended when Internal VREF is used, REG[9Eh] bit 0 = 1b

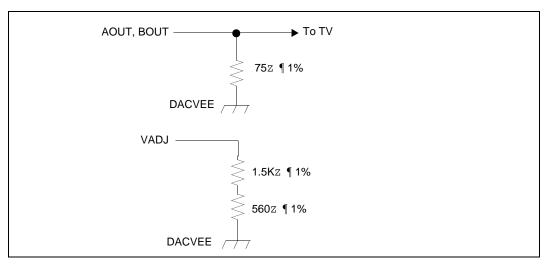


Figure 24-1: Recommended External Components - Internal V-Ref Used

The following circuit is recommended when External VREF is used, REG[9Eh] bit 0 = 0b

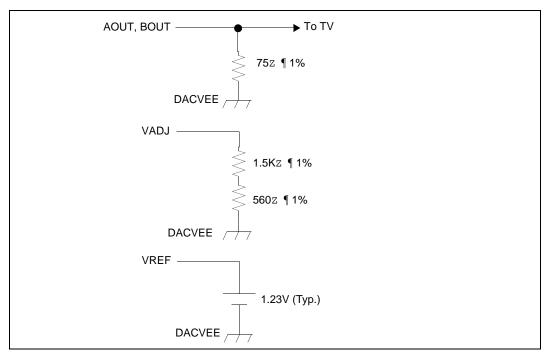
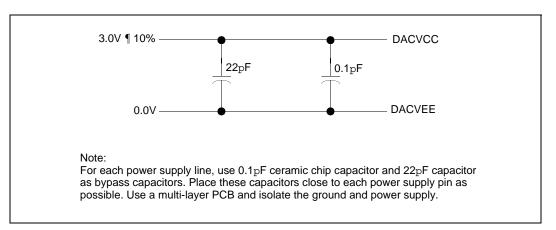



Figure 24-2: Recommended External Components - External V-Ref Used

The following circuit is recommended for the DAC power supply pins.

Figure 24-3: Recommended External Components - DAC Power Pins, ESD Considerations

The following circuit describes the recommended external components for TV analog output.

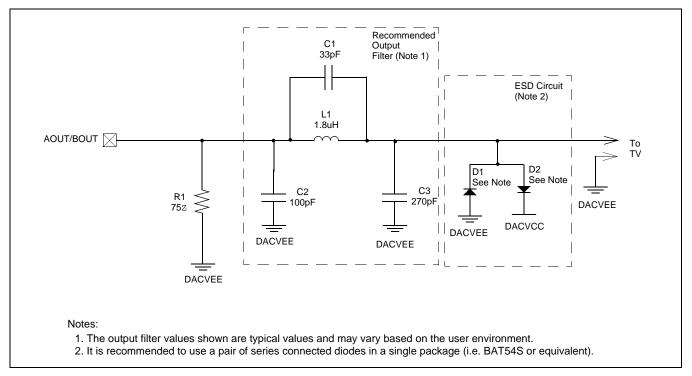


Figure 24-4: Recommended External Components - TV Output, ESD Considerations

Note

The large capacitance of the above ESD circuit may introduce minor degradation of the video signals. Typically, this degradation is not "visually" noticeable and should be evaluated for each implementation.

24.2 Crystal Oscillator Circuit

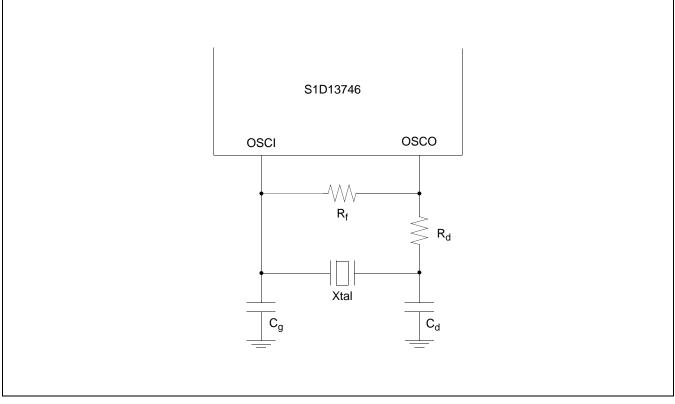


Figure 24-5: Crystal Oscillator External Circuit

Table 24-1 Recommended Oscillator External Circuit Parameter	Table 24-1	Recommended	Oscillator	External	Circuit Parameter
--	------------	-------------	------------	----------	-------------------

Symbol	Parameter	Min	Тур	Max	Units
R _f	Rf	—	1	_	Mz
R _d	Rd	—	1800	_	Z
Cg	Cg	—	5.6	_	pF
C _d	Cd	—	5.6	_	pF
Xtal	Fundamental mode Crystal	18	27	27	MHz

25 Analog Power Supply Considerations

The PLL and DACA circuits are an analog circuit which is very sensitive to noise on the input clock waveform or the power supply. Noise on the clock or the supplied power may cause the operation of these circuits to become unstable or increase the jitter.

Due to these noise constraints, it is highly recommended that the power supply traces or the power plane for these circuits to be isolated from those of other power supplies. Filtering should also be used to keep the power as clean as possible.

The following are guidelines which, if followed, will result in cleaner power to the PLL and DACA circuits. This will result in a cleaner and more stable clock. Even a partial implementation of these guidelines will give results.

25.1 Guidelines for Analog Power Layout

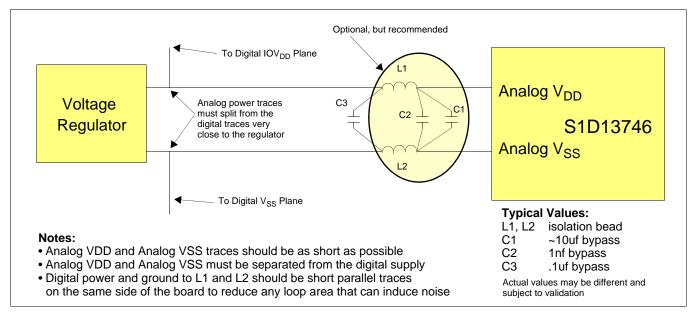


Figure 25-1: Analog Power Layout

• Place the ferrite beads (L1 and L2) parallel to each other with minimal clearance between them. Both bypass caps (C2 and C3) should be as close as possible to the inductors. The traces from C3 to the power planes should be short parallel traces on the same side of the board with just the normal small clearance between them. Any significant loop area here will induce noise. If there is a voltage regulator on the board, try to run these power traces directly to the regulator instead of dropping to the power planes (still follow above rules about parallel traces).

- The analog ground point where bypass cap (C2) connects to the ground isolation inductor (L2) becomes the analog ground central point for a ground star topology. None of the components connect directly to the analog ground pin of the MGE (PLLV_{SS}) except for a single short trace from C2 to the PLLV_{SS} pin. The ground side of the large bypass capacitor (C1) should also have a direct connection to the star point.
- The same star topology rules used for analog ground apply to the analog power connection where L2 connects to C2.
- All of the trace lengths should be as short as possible.
- If possible, have all the PLL traces on the same outside layer of the board. The only exception is C1, which can be put on the other side of the board if necessary. C1 does not have to be as close to the analog ground and power star points as the other components.
- If possible, include a partial plane under the PLL area only (area under PLL components and traces). The solid analog plane should be grounded to the C2 (bypass) pad. This plane won't help if it is too large. It is strictly an electrostatic shield against coupling from other layers' signals in the same board area. If such an analog plane is not possible, try to have the layer below the PLL components be a digital power plane instead of a signal layer.
- If possible, keep other board signals from running right next to PLL pin vias on any layer.
- Wherever possible use thick traces, especially with the analog ground and power star connections to either side of C2. Try to make them as wide as the component pads thin traces are more inductive.

It is likely that manufacturing rules will prohibit routing the ground and power star connections as suggested. For instance, four wide traces converging on a single pad could have reflow problems during assembly because of the thermal effect of all the copper traces around the capacitor pad. One solution might be to have only a single trace connecting to the pad and then have all the other traces connecting to this wide trace a minimum distance away from the pad. Another solution might be to have the traces connect to the pad, but with thermal relief around the pad to break up the copper connection. Ultimately the board must also be manufacturable, so best effort is acceptable.

26 Mechanical Data

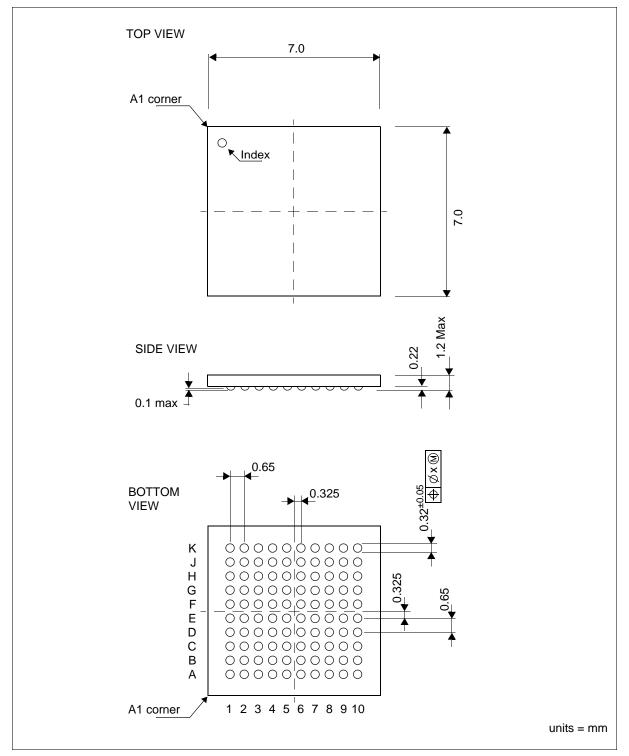


Figure 26-1: S1D13746 PFBGA 100-pin Package

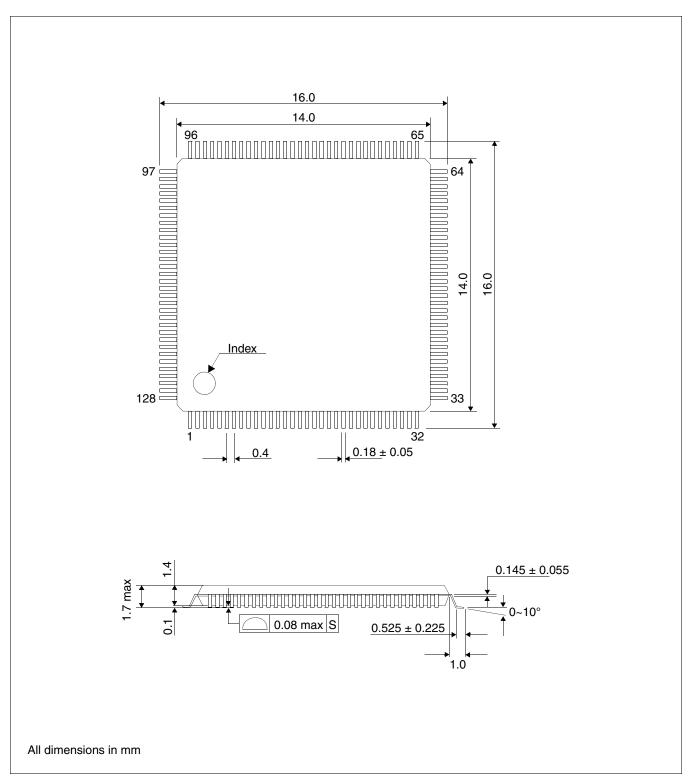


Figure 26-2: S1D13746 QFP15 128-pin Package

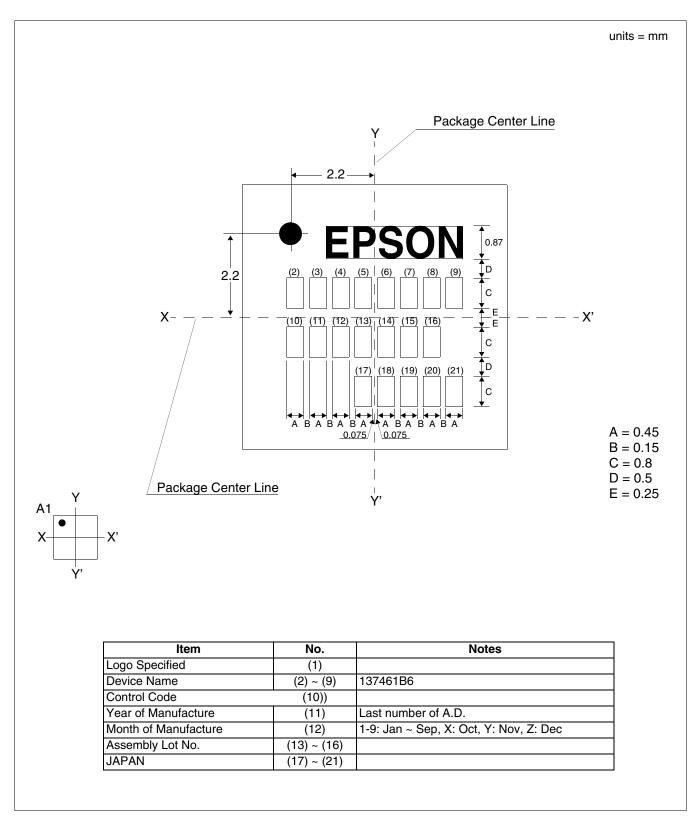


Figure 26-3: S1D13746 PFBGA 100-pin Package Marking

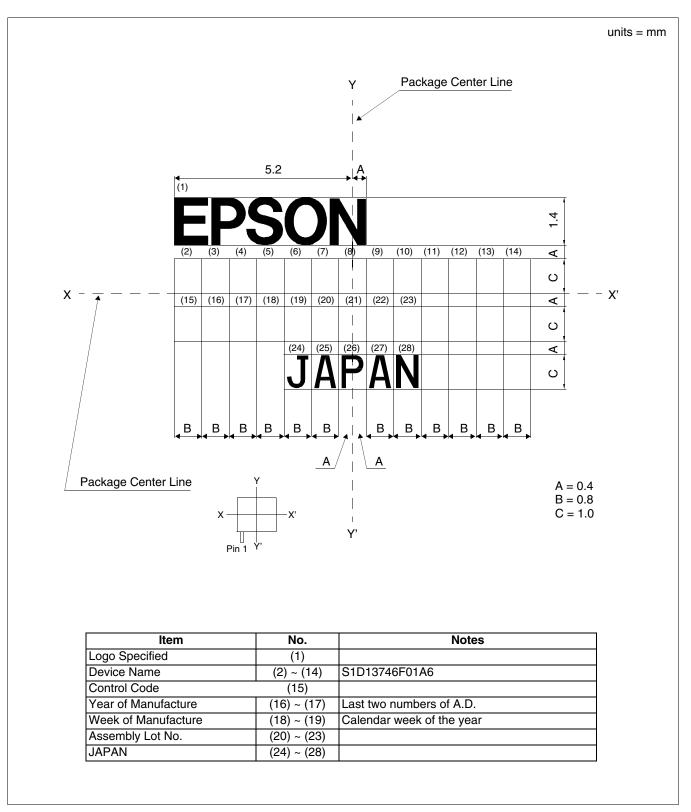


Figure 26-4: S1D13746 QFP15 128-pin Package Marking

Product Code	Marking	Description
S1D13746B01B600	137461B6	MacroVision Disabled
S1D13746F01A600	S1D13746F01A6	MacroVision Disabled

<i>Table 26-1:</i>	S1D13746 Product Marking
10000 10 10	

27 References

The following documents contain additional information related to the S1D13746. Document numbers are listed in parenthesis after the document name. All documents can be found at the Epson Research and Development Website at **www.erd.epson.com**.

- S1D13746 Product Brief (X74A-C-001-xx)
- S5U13746P00C100 Evaluation Board User Manual (X74A-G-001-xx)

28 Sales and Technical Support

AMERICA

EPSON ELECTRONICS AMERICA, INC.

2580 Orchard Parkway San Jose, CA 95131,USA Phone: +1-800-228-3964 FA

FAX: +1-408-922-0238

EUROPE

EPSON EUROPE ELECTRONICS GmbH

Riesstrasse 15, 80992 Munich, GERMANY Phone: +49-89-14005-0 FAX: +49-89-14005-110

ASIA

EPSON (CHINA) CO., LTD.

7F, Jinbao Bldg., No.89 Jinbao St., Dongcheng District, Beijing 100005, CHINA Phone: +86-10-8522-1199 FAX: +86-10-8522-1125

SHANGHAI BRANCH

7F, Block B, High-Tech Bldg., 900, Yishan Road, Shanghai 200233, CHINA Phone: +86-21-5423-5577 FAX: +86-21-5423-4677

SHENZHEN BRANCH

12F, Dawning Mansion, Keji South 12th Road, Hi-Tech Park, Shenzhen 518057, CHINA Phone: +86-755-2699-3828 FAX: +86-755-2699-3838

EPSON HONG KONG LTD.

Unit 715-723, 7/F Trade Square, 681 Cheung Sha Wan Road, Kowloon, Hong Kong Phone: +852-2585-4600 FAX: +852-2827-4346

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road, Taipei 110, TAIWAN Phone: +886-2-8786-6688 FAX: +886-2-8786-6660

EPSON SINGAPORE PTE., LTD.

1 HarbourFront Place, #03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182

SEIKO EPSON CORP.

KOREA OFFICE 5F, KLI 63 Bldg., 60 Yoido-dong Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: +82-2-784-6027 FAX: +82-2-767-3677

SEIKO EPSON CORP. MICRODEVICES OPERATIONS DIVISION

Device Sales & Marketing Dept. 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-42-587-5814 FAX: +81-42-587-5117

28.1 Ordering Information

To order the S1D13746 TV-Out Mobile Graphics Engine, contact the Epson sales representative in your area.

Change Record

X74B-A-001-02	Revision 2.3 - Issued: June 9, 2011
	 section 8.3 RESET# Timing - changes to table 8-6 S1D13746 RESET# Timing, for t1 change Max value and remove Min value, for t2 change Min value and remove Max value
	• REG[52h] bit 7 - unreserve this bit and rewrite bit description
	• chapter 21 Double Buffer Description - change all occurances of "TV Frame Rate" and "TV Frame Period" to "TV Field Rate ((60Hz for NTSC and PAL-M, 50Hz for PAL)" and "TV Field Period" respectively
X74B-A-001-02	Revision 2.2 - Issued: December 11, 2008
	Changes from the previous Revision are Red
	 section 8.1.3 PLL Clock - remove minimum PLL clock of 45MHz from figure 8-2 and table 8-3
	• REG[42h] ~ REG[48h] - in table 11-8, VBI Data Bit Descriptions (CEI 61880, 525 Line systems), add description for VBI Data bits 1 and 0; for VBI Data bits 11 and 10, swap the descriptions for 01b and 10b
	• REG[C0h] bit 1 - add note "SYSCLK must be 54MHz when 3x3 filter is enabled"
	• section 16.1 3x3 Filter - add note "SYSCLK must be 54MHz when 3x3 filter is enabled"
	 section 19 VBI and Wide-Screen Signalling Function - update all register references to reflect correct registers
	 section 28 Sales and Technical Support - changes to offices and addresses
X74B-A-001-02	Revision 2.1 - Issued: August 5, 2008
	Changes from the previous Revision are Red
	• section 8.6.2 - add this section
	• REG[20h] bits 5-0 - remove note"When the input clock is between 1MHz and 18MHz or"
	• REG[2Ah] bits 6-0 - remove note 2 "When the input clock is between 1MHz and 18MHz or"
	• REG[2Ch] bit 2 - remove note "When the input clock is between 1MHz and 18MHz or"
	• REG[4Eh] bits 5-4 - remove note 4 "When the input clock is between 1MHz and 18MHz or"

X74B-A-001-02	Revision 2.0 - Issued: September 14, 2007
	Changes from the previous Revision are Red
	• add the QFP15 128-pin package information to the spec
	• section 27, added References section
	 section 28, added Sales and Technical Support section
X74B-A-001-01	Revision 1.05 - Issued: June 11, 2007
	Changes from the previous Revision are Red
	• REG[20h] bits 5-0 - add note "When the input clock is between 1MHz and 18MHz or between 27MHz and 54MHz"
	• REG[2Ah] bits 6-0 - add note "2. When the input clock is between 1MHz and 18MHz or between 27MHz and 54MHz"
	• REG[2Ch] bit 2 - add note "When the input clock is between 1MHz and 18MHz or between 27MHz and 54MHz"
	 REG[4Eh] bits 5-4 - add note "4. When the input clock is between 1MHz and 18MHz or between 27MHz and 54MHz" and in Table 11-13 TV Clock Settings, under CLKI Frequency, remove "27<clki<54"< li=""> </clki<54"<>
	 section 26 Mechanical Data - correct typo in figure 26-2, change "E = 025" to "E = 0.25"
X74B-A-001-01	Revision 1.04 - Issued: February 8, 2007
	Changes from the previous Revision are Red
	 section 5.2.1 Intel 80 Host Interface - rewrite both PCLK and DE descriptions for connection to VSS only when not used
	 connection to VSS only when not used section 5.2.5 Miscellaneous - rewrite PWRSVE description and add "terminated to
	 connection to VSS only when not used section 5.2.5 Miscellaneous - rewrite PWRSVE description and add "terminated to VSS" section 5.2.6 Power and Ground - for OSCVSS description in table, change "IO power
	 connection to VSS only when not used section 5.2.5 Miscellaneous - rewrite PWRSVE description and add "terminated to VSS" section 5.2.6 Power and Ground - for OSCVSS description in table, change "IO power supply for the Oscillator (2.5v)" to "GND for the Oscillator"
	 connection to VSS only when not used section 5.2.5 Miscellaneous - rewrite PWRSVE description and add "terminated to VSS" section 5.2.6 Power and Ground - for OSCVSS description in table, change "IO power supply for the Oscillator (2.5v)" to "GND for the Oscillator" section 6.1 Intel 80 Data Pins - for MD[15:8], under 8-Bit Data, add "eight used" section 7.1 Absolute Maximum Ratings - correct typo in table 7-1, change "HIOVDD"
	 connection to VSS only when not used section 5.2.5 Miscellaneous - rewrite PWRSVE description and add "terminated to VSS" section 5.2.6 Power and Ground - for OSCVSS description in table, change "IO power supply for the Oscillator (2.5v)" to "GND for the Oscillator" section 6.1 Intel 80 Data Pins - for MD[15:8], under 8-Bit Data, add "eight used" section 7.1 Absolute Maximum Ratings - correct typo in table 7-1, change "HIOVDD" to "IOVDD" section 7.2 Recommended Operating Conditions - correct typo in table 7-2, change
	 connection to VSS only when not used section 5.2.5 Miscellaneous - rewrite PWRSVE description and add "terminated to VSS" section 5.2.6 Power and Ground - for OSCVSS description in table, change "IO power supply for the Oscillator (2.5v)" to "GND for the Oscillator" section 6.1 Intel 80 Data Pins - for MD[15:8], under 8-Bit Data, add "eight used" section 7.1 Absolute Maximum Ratings - correct typo in table 7-1, change "HIOVDD" to "IOVDD" section 7.2 Recommended Operating Conditions - correct typo in table 7-2, change "HIOVDD" to "IOVDD" section 7.5 Power Estimation Guidelines - in table 7-10 add S-Video output to

- X74B-A-001-01 Revision 1.03 Issued: October 3, 2006
 - Changes from the previous Revision are Red
 - section 5.2.5 Miscellaneous for GPIO[7:5] and GPIO[4:0] change RESET# State to "0"
 - section 26 Mechanical Data add figure 26-2 S1D13746 Package Marking
- X74B-A-001-01 Revision 1.02 (issued 2006/09/12)
 - Changes from the previous Revision are Red
 - section 3.2 CPU Interface rewrite Three Wire Serial Interface Bullet for Register data only
 - section 5.2.3 TV Interface rewrite description for AOUT, BOUT
 - section 5.2.3 TV Interface rewrite description for VADJ
 - section 6.1 Intel 80 Data Pins in table under 8-Bit Data, change MD[15:8] to Connect to ground through pull-down resistor
 - section 7.3 Electrical Characteristics in table 7-4 Power Consumption, change I_{OSC} to 600 ${\rm pA}$
 - section 7.4 DAC Characteristics rewrite note "If the TV outputs from AOUT or BOUT are not connected..."
 - section 7.5 Power Estimation Guidelines- add this section
 - REG[2Ah] replace table of example PLL clock settings
 - REG[54h] bits 5-0 rewrite bit description and change table for Common f_{timing}/f_{dds} and f_{sc}/f_{dds} Ratios
 - section 20.1 Initializing the S1D13746 add this section
 - section 23.1 Sleep Mode rewrite the first paragraph "Sleep mode disables all internal blocks..." for analog TV encoder block
 - section 23.2 Standby Mode rewrite the first paragraph "Sleep mode disables all internal blocks..." for analog TV encoder block
 - section 24.1 DAC External Components figure 24-4 Recommended External Components - TV Output, changes to the figure and added note "All component values are typical values." in figure and note "The large capacitance of the above ESD circuit..." below figure
 - section 26 Mechanical Data add table 26-1 S1D13746 PFBGA 100-pin Product Marking

X74B-A-001-01 Revision 1.01 (issued 2006/06/13)

- All changes from the previous Revision are Red
- REG[2Ch] bit 2 un-reserve this bit

- REG[4Eh] bits 5-4 in table 11-12 TV Input Clock Settings, reserve 11b, for table 11-13 TV Clock Settings, add TV DDS Clock Select column and 1 *f* CLKI *f* 18 or 27 *f* CLKI *f* 54 row
- section 11.3.4 Macrovision Protection Registers (REG[58h] ~ REG[5Ah]) put these registers back in spec

X74B-A-001-01 Revision 1.0 (issued 2006/06/13)

- All changes from the previous Revision are Red
- section 3.4, added a note for the Macrovision Protection description that Macrovision is only supported when CLKI or OSC frequency is 27MHz
- section 5.2.1 Intel 80 Host Interface for both PCLK and DE add paragraph "If the Parallel RGB Interface is not used..." to Description
- section 5.2.4 Clocks change CLKOUT and OSCO RESET# State and Power Save State and add notes "1. When CLKOUTEN = 1, this pin..." and "2. When CNF2=1, this pin..."
- section 7.3 Electrical Characteristics for table 7-4 Power Consumption add I_{IO} and I_{CORE} max values
- section 7.4 DAC Characteristics add note "If the TV outputs AOUT or BOUT are not connected..."
- section 7.4, for the DAC Characteristics changed Radj from 23000hm to 20600hm and changed the clock cycle from 50+/-5% to 50+/-10%
- section 8.1.3, for the PLL Clock figure and table changed the maximum PLL Lock in/Stable time from 1ms to 2.5ms
- section 8.3.1, removed Memory Read parameters from the Intel 80 Timing table
- section 8.5.1, changed t3max (Vertical Active Frame Period) from "1023" to "1024"
- section 8.5.2, changed t3max (Horizontal Active Line Period) from "1023" to "1024"
- section 8.6.1 TV Output Timing in table 8-11 Horizontal Timing for NTSC/PAL, change t1 and t5 for all, t4 = 2.52 for PAL Nc, t6 = 10.222 for PAL M, and add notes
- section 8.6.1 TV Output Timing in table 8-11 Horizontal Timing for NTSC/PAL, change t4 = 2.52 for PAL M
- section 8.6.1 TV Output Timing in table 8-12 Vertical Timing for NTSC/PAL, change t4 = 3 for all, and add note
- section 9.1, removed the TV DDS Clock Source Select bit from the clocks figure
- section 11.3 Register Descriptions add paragraph "Reserved registers must not be written. The Host..." to body text
- REG[02h] bit 7 add "...and REG[80h] bit 7 has no effect" to bit description
- REG[20h] bit 7, added information to the PLL Lock bit description that the maximum PLL Lock in time is 2.5ms and added cross reference to the PLL Clock timing section
- REG[2Ch] bit 2, reserved the TV DDS Clock Source Select bit

- REG[2Ch] bit 0 in note change "1ms" to "2.5ms"
- REG[2Eh] add note "IREF/VREF and TV OUT must be disabled before entering Sleep Mode"
- REG[2Eh] bit 7 in bit description change "1ms" to "2.5ms"
- REG[2Eh] bits 1-0, added engineering text note as follows "
- REG[4Ah] bit 4 rewrite bit description
- REG[4Eh] bits 2-0, REG[4Ch] bits 7-0, reserved the DDS Accumulator Reset Value bits
- REG[4Eh] bits 5-4, for the TV Clocks Setting bit description added option=11b where timing=26MHz and fdds=26MHz
- REG[4Eh] bits 5-4, for the TV Clocks Setting bit description added a note for option=10b when CLKI is not 26MHz as follows "If REG[4Eh] bits 5-4 = 10b and CLKI is less than 26MHz, the SCH Phase error cannot meet the consumer grade specification of within 20 degrees."
- REG[4Eh] bits 5-4 in table remove row starting "1 f CLKI f 18 or 27 f CLKI f 54"
- REG[4Eh] bits 5-4, for the TV Clocks Setting bit description removed references to REG[2Ch] bit 2 from the TV Clock Settings table
- REG[58h] ~ REG[5Ah] reserve these registers. Under normal operation these registers should not be written to
- REG[62h] bit 7, for the Window Data Type bit description added cross references to the Use Case and Double Buffer sections, and removed the notes which are explained in the back sections
- REG[62h] bit 6, added double-buffer restrictions relating to the input frame rate and the input data burst when Parallel RGB interface is selected
- REG[62h] bit 6, for the Double-Buffer Enable bit description added cross references to the Use Case and Double Buffer sections, and removed the notes which are explained in the back sections
- REG[62h] bit 5, for the Background Window bit description added cross references to the Use Case and Double Buffer sections, and removed the notes which are explained in the back sections
- REG[62h] bit 5 add note "1. For RGB Host Interface, this bit must be set to 1b"
- REG[62h] bit 4 correct typo in table under scaling ratio for NTSC
- REG[62h] bit 4, added a note to the Square Pixel Correction Enable bit description that PALM is not supported
- REG[64h] ~ REG[6Ah], added information to the Input Window Size / Position Registers section including more input width/height restrictions and a figure/table indicating supported resolutions

- section 11.3.5 Input Data Control Registers under Input Window Size/Position Registers in the paragraph "Depending on the background input window resolution..." change "height must be divisible by 1, 2, or 4" to "height must be divisible by 2, 4, or 8"
- REG[64h] ~ REG[6Ah], added engineering text information to the Input Window Size / Position Registers section about double-buffering restrictions based on the background window
- REG[64h] ~ REG[6Ah], added the following information to the Input Window Size/Position Description "The overlay window output x,y start positions are referenced to the background output size (size after scaling). The overlay input window size is referenced to the background input size (size before scaling)."
- REG[80h] bit 7 correct typo in bit description, change reference to REG[04h] to REG[02h]
- REG[80h] bit 7, added a note for the Macrovision Enable bit description that Macrovision is only supported when both TV clocks are configured for 27MHz
- REG[82h] ~ REG[88h], added a note to the Display Output description as follows "The overlay window output x,y start positions are referenced to the background output size (size after scaling). The overlay input window size is referenced to the background input size (size before scaling)."
- REG[92h] ~ REG[96h], added formulas for generating the YUV values needed for the Border Color registers
- REG[98h] ~ REG[9Ch], added formulas for generating the YUV values needed for the Transparency Color registers and re-organized the bit description for clarity
- REG[98h] ~ REG[9Ch] remove note "2. When using transparency, the input scaler is not available"
- REG[9Eh] bits 7-2 add these bits
- REG[A0h], removed comment about "...individual memory location reads..."
- REG[A2h] ~ REG[A6h], reserved the Memory Read Address registers
- REG[ECh], changed the default register value from "06h" to "26h" for the Non-Display Period Control / Status register
- section 14.5 YUV 4:2:0 ODD Line with Intel 80, 16-bit Interface add note "When using this mode, the input window width must be divisible by 4"
- section 16.1.1, added Dot Crawl + Flicker Filter programming values to the 3x3 Pixel Matrix Filter Function table
- section 17.1 Register Write Procedure add paragraph "Writing to the S1D13746 registers is a two step process..."
- section 17.1, removed information about "... memory reads..."
- section 17.2 Register Read Procedure add paragraph "Writing to the S1D13746 registers is a two step process..."
- section 17.1.3 Sequential Memory Write Procedure rewrite section

- section 18, added double-buffer restrictions relating to the input frame rate and the input data burst when Parallel RGB interface is selected
- section 21 Double Buffer Description rewrite entire section
- section 21, Double Buffer Description section updated with ILB information
- section 23, added new section with recommended sequences for entering and exiting sleep mode
- section 24.2, for the Crystal Oscillator Circuit table changed the Rd typical value from 820 Ohms to 1800 Ohms
- section 24.2 Crystal Oscillator Circuit in the table add Xtal min and max values

X74B-A-001-00 Revision 0.03 (issued 2006/05/15)

- All changes from the previous Revision are Red
- section 2.1.4 Multiple TV Windows rewrite Multiple Windows with Transparency and add the third mode "Text Mode"
- section 3.8 Miscellaneous add package information
- section 5.1 Package Pin Mapping add note "Pins marked as NC..."
- section 5.2 Pin Descriptions add AP, G, and AG to Key
- section 5.2.1, for MD[7] fixed pin# typo, should be "E9" instead of "E7"
- section 5.2.1, for MD[6] fixed pin# typo, should be "E10" instead of "E6"
- section 5.2.1 Intel 80 Host Interface rewrite GPIO_INT description
- section 5.2.3 TV Interface for AOUT, BOUT description add "For further details...", and rewrite the VREF and VADJ descriptions
- section 5.2.4 Clocks add note "For details on the clock..." and change the Power Save Status for OSCO
- section 8.3.1 Intel 80 Interface Timing in table 8-5 for two parameter change "rising edge" to "falling edge"
- section 8.6.1 TV Output Timing in table 8-12 Vertical Timing for NTSC/PAL change the heading "NTSC" to "NTSC M/J, PAL M" and "PAL" to "PAL B/D/G/H/I/N/Nc"
- section 9.1 Clock Block Diagram correct error for selection of TV Timing source
- REG[2Ch] bit 2 add "This clock should not be from..." and change "OSC or Xtal" to "CLKI or OSCx" in "When this bit = 0b..."
- REG[2Ch] bit 1 add "or OSCx" to "When this bit = 0b..."
- REG[2Ch] bit 0 change "OSC or Xtal" to "CLKI or OSCx" in "When this bit = 0b..." and correct typo in note, change "10ms delay" to "1ms delay"
- REG[2Eh] bit 1 correct typo in bit description, change "10ms delay" to "1ms delay"
- REG[40h] bits 6-5 correct typo in table, under Standard, change ITU-R BT.119-2 to ITU-R BT.1119-2

• INDEX[05h] bits 2-0 - correct typo, change 525/50 to 625/50 in equations • REG[C0h] - correct typos in table 11-29 3X3 Pixel Matrix Filter Function Programming Values, change second set of U1 ~ U8 to V1 ~ V8 • section 12 Intel 80, 8-Bit Interface Color Formats - for each subsection add "When REG[60h] bits 3-0 =..." section 15.1 SwivelView Concept - correct typo, change LCD to TV • section 16.1 Example Programming Values - correct typos in table 16-1 3X3 Pixel Matrix Filter Function Programming Values, change second set of U1 ~ U8 to V1 ~ V8 X74B-A-001-00 Revision 0.02 (issued 2006/04/07) · All changes from the previous Revision are Red globally remove references to DACVDD and change DACVSS to DACVEE • section 1.2, added YYC, YRC, RYC, VDP, VNDP, DDS, POUT to the list of abbreviations • section 1.2.1, added Comparison section • section 5.1 Package Pin Mapping - change pins K2 to NC and K3 to DACVEE section 5.2.5 Miscellaneous - rewrite the PWRSVE pin description and change cell type to HI • section 5.2.6 Power and Ground - add pin K3 to DACVEE • section 7 D.C. Characteristics - this entire section has been edited and updated • section 8 A.C. Characteristics - changes to Conditions, change IOVDD range • section 8.1.1 Input Clocks - multiple changes to table 8-1 • section 8.1.2 OSC Clock - add this section • section 8.1.3 PLL Clock - in figure 8-2, change the PLL min = 45 and max = 54, and lock time to 1 ms • section 8.1.3 PLL Clock - multiple changes and updates to table 8-3 • section 8.2 RESET# Timing - in table 8-3, for CNF3 = 1 change t1 min to 5.01 and max to 5.10 • section 8.3.1 Intel 80 Interface Timing - multiple changes and updates to table 8-5 section 8.4.1 3-Wire Serial Interface Timing - in table 8-5 change t3 min to 8 and t7 max to 25 • section 8.4.2 4-Wire Serial Interface Timing - in table 8-6 change t3 min to 8, t6 max to 20, and t7 max to 25 • section 8.5.3 Input Signal Timings Relative to PCLK - in table 8-9 change t2 min to 8 • REG[62h] bit 4 - add table for bit function • REG[ECh] bit 5, added bit state descriptions to the TE Status bit description

	• REG[ECh] bit 4, added bit state descriptions to the Input Busy Status bit description
	• REG[ECh] bit 3, updated the TE Output Pin Enable bit description to better describe the actual function of this bit
	• REG[ECh] bits 2-0, fixed register reference typo in the table ("E8h" changed to "ECh") and added TE Output Pin Function Timing figure
	 section 17.1, for the Host Interface Access example diagrams, changed references to "D[7:0]" to "MD[7:0]"
	 section 23.1 DAC External Components - figure 23-3 Recommended External - DAC Power Pins, ESD Considerations, remove references to DACVDD and DACVSS
	 section 24, removed references to SAVDD and SPVDD from the Analog Power Supply Considerations section, these power supplies do not apply to the S1D13746
X74B-A-001-00	Revision 0.01 (issued 2006/03/02)
	• All changes from the previous Revision are Red
	• created from the S1D13745B00 specification rev. 0.12
	• section 3.5 TV Display Features - add bullet "Square pixel output width scaling"
	• section 3.7 Clock Source - rewrite note "An 18MHz to 27MHz clock is required"
	 section 5.2, updated HI, HIS, HID, HO, HB, and HBD cell descriptions to include "Fail Safe"
	 section 9.1 Clock Block Diagram - add TV Timing Source Select and TV DDS Source Select to diagram
	 section 11.1 Register Mapping - change Address F0h to FAh to "Asynchronous" in table 11-1 S1D13746 Register Mapping
	• REG[00h] - change default value to A9h, change bits 1-0 value to 01b
	• REG[02h] bit 7 - correct typo in bit description (register reference)
	• REG[20h] - change default value to 1Ah
	• REG[2Ah] - change default value to 35h
	• REG[2Ah] - changes to entire PLL Setting Examples table
	• REG[2Ch] - add bits 2 and 1 to register
	• REG[4Ah] bit 4 - rewrite bit description

- REG[4Ch] bits 7-0 ~ REG[4Eh] bits 2-0 add note "The value written into REG[4Ch] will not..."
- REG[4Eh] bits 7-6 reserve these register bits
- REG[4Eh] bits 5-4 add these bits to register
- REG[52h] bit 7 reserve this bit

- REG[54h] bits 4-0 changes to tables, add 2 more Luminance Filter coefficients and 4 more Chrominance Filter coefficients to tables, and add User Clock Ratio
- REG[56h] add "and User Clock Ratio" to register name
- section 11.3.5 Input Data Control Registers under Input Window Size / Position Registers, add the paragraphs "The maximum input window resolution for..." and "Depending on the background input window resolution, the..." with table under Limitations
- REG[62h] bit 4 add this bit to register
- REG[64h] ~ REG[66h] add 2 bits to Input Window Height
- REG[68h] ~ REG[6Ah] add 2 bits to Input Window Width
- REG[9Eh] bits 7-2 reserve these bits
- section 22 TV Filter Operation rewrite for 15 tap filter